Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(145)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div340
"
type
="
chapter
"
level
="
2
"
n
="
3
">
<
div
xml:id
="
echoid-div346
"
type
="
section
"
level
="
3
"
n
="
4
">
<
p
>
<
s
xml:id
="
echoid-s1738
"
xml:space
="
preserve
">
<
pb
o
="
145
"
rhead
="
DE MECHAN.
"
n
="
157
"
file
="
0157
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0157
"/>
grauius, quia tantò minus pendebit à centro
<
var
>.o.</
var
>
& ratiocinando, vt ſuperius dixi-
<
lb
/>
mus, inueniemus eundem effectum verum eſſe. </
s
>
<
s
xml:id
="
echoid-s1739
"
xml:space
="
preserve
">In ſtateris, rectè & propriè appella
<
lb
/>
ri poteſt
<
var
>.x.i.s.</
var
>
aut
<
var
>.n.o.u.</
var
>
orizontalis, ſed in omni vectium ſpecie, hoc
<
reg
norm
="
tantum
"
type
="
context
">tãtum</
reg
>
per quan
<
lb
/>
dam ſimilitudinem dicetur. </
s
>
<
s
xml:id
="
echoid-s1740
"
xml:space
="
preserve
">Idem contemplari licet ſupponendo centrum in medio
<
lb
/>
inter
<
var
>.o.</
var
>
et
<
var
>.i.</
var
>
quod vnuſquiſque ex ſe abſque alterius auxilio facile præſtare poterit.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div348
"
type
="
section
"
level
="
3
"
n
="
5
">
<
head
xml:id
="
echoid-head203
"
style
="
it
"
xml:space
="
preserve
">De quibuſdam rebus animaduerſione dignis.</
head
>
<
head
xml:id
="
echoid-head204
"
xml:space
="
preserve
">CAP.V.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1741
"
xml:space
="
preserve
">NOn omittenda mihi
<
reg
norm
="
videntur
"
type
="
context
">vidẽtur</
reg
>
quædam, quæ ad
<
reg
norm
="
tractationem
"
type
="
context
">tractationẽ</
reg
>
vectium admodum
<
lb
/>
ſunt neceſſaria. </
s
>
<
s
xml:id
="
echoid-s1742
"
xml:space
="
preserve
">Quod autem quærimus, in eo conſiſtit, quòd aliqui vectes
<
lb
/>
adhibeantur ad opus, quorum centrum, quod Græci
<
reg
norm
="
hypomochlion
"
type
="
context
">hypomochliõ</
reg
>
appellant vnum
<
lb
/>
eſt ex extremis ipſius vectis, & pondus, quod ſurſum eleuari debet, inter ipſa-
<
lb
/>
met extrema iacet, propinquum tamen hypomochlio, vt exempli gratia, ſi vectis
<
lb
/>
eſſet infraſcripta figura
<
var
>.o.s.u.x.</
var
>
cuius hypomochlion eſſet in puncto
<
var
>.o.</
var
>
& pondus in
<
lb
/>
puncto
<
var
>.n.</
var
>
clarum erit,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
cum eleuari debeat
<
var
>.n.</
var
>
oportebit quoque opera manus ele-
<
lb
/>
uari
<
var
>.u</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1743
"
xml:space
="
preserve
">Nunc conſiderandum eſt quomodo pondus
<
var
>.n.</
var
>
annitatur ad
<
var
>.u</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1744
"
xml:space
="
preserve
">Hanc ob cau
<
lb
/>
ſam imaginabimur rectas lineas
<
var
>.n.o</
var
>
:
<
var
>n.i</
var
>
:
<
var
>n.e</
var
>
:
<
var
>n.t.</
var
>
et
<
var
>.n.u.</
var
>
quarum
<
var
>.n.i.</
var
>
verſus mundi cen
<
lb
/>
trum ſit poſita, et
<
var
>.n.t.</
var
>
faciat angulum
<
var
>.i.n.t.</
var
>
æqualem angulo
<
var
>.i.n.o</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1745
"
xml:space
="
preserve
">Nunc ponendo ali
<
lb
/>
quam virtutem in
<
var
>.i.</
var
>
æquali inclinatione ad ſuperius conſtante, vt
<
var
>.n.</
var
>
ad inferius (re-
<
lb
/>
mota tamen grauitate materiæ vectis) huiuſmodi virtus, totum pondus ipſius
<
var
>.n.</
var
>
com
<
lb
/>
muni quadam ſcientiæ notione ſuſtinebit. </
s
>
<
s
xml:id
="
echoid-s1746
"
xml:space
="
preserve
">& ſi
<
reg
norm
="
pondus
"
type
="
context
">põdus</
reg
>
ipſius
<
var
>.n.</
var
>
eſſet in
<
var
>.x.</
var
>
è directo ſu-
<
lb
/>
per
<
var
>.o.</
var
>
totum pondus ſuper hypomochlio ſe haberet, & tanta virtus ipſius hypomo-
<
lb
/>
chlij ſufficeret ad reſiſtendum pro ſuſtinendo, quanta eſt grauitas ipſius ponderis,
<
lb
/>
ſed ipſum iterum ponamus in
<
var
>.n.</
var
>
ibi clarum erit, quòd ſi alia virtus à parte inſeriori
<
lb
/>
ad ſuperiorem vectis non opponitur, excepto tamen hypomochlio, oportebit virtu
<
lb
/>
te cuiuſdam partis ponderis
<
var
>.n.</
var
>
(abſque conſideratione tamen, vt iam dixi, ponderis
<
lb
/>
materiæ vectis) vt vectis à parte
<
var
>.s.u.</
var
>
deprimatur, & dixi vnius cuiuſdam partis pon-
<
lb
/>
deris
<
var
>.n.</
var
>
quia alia
<
reg
norm
="
eiuſdem
"
type
="
context
">eiuſdẽ</
reg
>
ponderis pars annititur ipſi hypomochlio
<
var
>.o.</
var
>
<
reg
norm
="
mediante
"
type
="
context
">mediãte</
reg
>
linea
<
lb
/>
<
var
>o.n.</
var
>
quæ angulos rectos cum
<
var
>.o.x.</
var
>
non facit. </
s
>
<
s
xml:id
="
echoid-s1747
"
xml:space
="
preserve
">Si autem à puncto
<
var
>.t.</
var
>
opponet ſeſe huiuſ-
<
lb
/>
modi reſiſtentia, vt vectis non deprimatur, clarum erit communi ſcientia,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
virtus
<
lb
/>
ponderis
<
var
>.n.</
var
>
diuiſa erit per medium æqualiter, cuius vna medietas ſuper
<
var
>.o.</
var
>
quieſcet,
<
lb
/>
& alia ſuper
<
var
>.t.</
var
>
mediantibus duabus lineis
<
var
>.n.o.</
var
>
et
<
var
>.n.t</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1748
"
xml:space
="
preserve
">Imaginemur nunc reſiſtentiam
<
lb
/>
t. ablatam eſſe,
<
reg
norm
="
poſitamque
"
type
="
simple
">poſitamq;</
reg
>
in
<
var
>.e.</
var
>
clarum quoque erit,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
maior pars ponderis
<
var
>.n.</
var
>
ipſi
<
var
>.e.</
var
>
<
lb
/>
annitetur beneficio lineæ
<
var
>.n.e.</
var
>
quàm ipſi
<
var
>.o.</
var
>
cum linea
<
var
>.n.i.</
var
>
inclinationis ipſi
<
var
>.e.</
var
>
ſit pro
<
lb
/>
pinquior quam
<
var
>.o.</
var
>
quia omnis reſiſtentia aut in
<
var
>.i.</
var
>
aut in
<
var
>.e.</
var
>
aut in
<
var
>.t.</
var
>
aut in
<
var
>.u.</
var
>
eſt loco
<
lb
/>
centri, quemadmodum eſt
<
var
>.o.</
var
>
& alter alterius opera iuuatur. </
s
>
<
s
xml:id
="
echoid-s1749
"
xml:space
="
preserve
">Si verò eadem reſiſten
<
lb
/>
tia poſita erit in
<
var
>.u.</
var
>
clarum quoque erit,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
minor pars ponderis
<
var
>.n.</
var
>
annitetur ipſi
<
var
>.u.</
var
>
<
reg
norm
="
quam
"
type
="
context
">quã</
reg
>
<
lb
/>
ipſi
<
var
>.o.</
var
>
cum dicta
<
var
>.n.i.</
var
>
à centro
<
var
>.u.</
var
>
longius quam à centro
<
var
>.o.</
var
>
diſter, & proportio partis
<
lb
/>
ponderis
<
var
>.n.</
var
>
in
<
var
>.o.</
var
>
ad propor-
<
lb
/>
tionem partis ponderis
<
var
>.n.</
var
>
in
<
lb
/>
<
figure
xlink:label
="
fig-0157-01
"
xlink:href
="
fig-0157-01a
"
number
="
214
">
<
image
file
="
0157-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0157-01
"/>
</
figure
>
u. non erit
<
reg
norm
="
ſecundum
"
type
="
context
">ſecũdum</
reg
>
propor
<
lb
/>
tionem angulorum
<
var
>.u.n.i.</
var
>
et
<
lb
/>
<
var
>o.n.i.</
var
>
ſed ſecundum propor
<
lb
/>
tionem
<
var
>.u.i.</
var
>
ad
<
var
>.i.o.</
var
>
quod cla
<
lb
/>
rè compræhendi poteſt ab </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>