Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(150)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div340
"
type
="
chapter
"
level
="
2
"
n
="
3
">
<
div
xml:id
="
echoid-div354
"
type
="
section
"
level
="
3
"
n
="
8
">
<
p
>
<
s
xml:id
="
echoid-s1791
"
xml:space
="
preserve
">
<
pb
o
="
150
"
rhead
="
IO. BAPT. BENED.
"
n
="
162
"
file
="
0162
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0162
"/>
lus
<
var
>u.A.C.</
var
>
æqualis ſit
<
lb
/>
angulo
<
var
>.K.B.T.</
var
>
& an-
<
lb
/>
gulus
<
var
>.C.A.F.</
var
>
æqua-
<
lb
/>
lis angulo
<
var
>.T.B.Z.</
var
>
<
reg
norm
="
nunc
"
type
="
context
">nũc</
reg
>
<
lb
/>
comparatio eſt inter
<
lb
/>
angulum
<
var
>.D.B.F.</
var
>
& an
<
lb
/>
gulum
<
var
>.K.B.Z.</
var
>
miſtili-
<
lb
/>
neos, qui quidem duo
<
lb
/>
anguli,
<
reg
norm
="
communem
"
type
="
context
">cõmunem</
reg
>
ha-
<
lb
/>
bent angulum miſtili
<
lb
/>
neum
<
var
>.K.B.F.</
var
>
quapro-
<
lb
/>
<
figure
xlink:label
="
fig-0162-01
"
xlink:href
="
fig-0162-01a
"
number
="
220
">
<
image
file
="
0162-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0162-01
"/>
</
figure
>
pter ſi angulus
<
var
>.K.B.Z.</
var
>
<
lb
/>
miſtilineus maior eſt
<
lb
/>
angulo
<
var
>.D.B.F.</
var
>
miſti-
<
lb
/>
lineo per angulum
<
var
>.
<
lb
/>
K.B.Z.</
var
>
contingentiæ,
<
lb
/>
circulorum ergo angu
<
lb
/>
lus miſtilineus com-
<
lb
/>
munis
<
var
>.K.B.F.</
var
>
æqualis
<
lb
/>
erit miſtilineo, angu-
<
lb
/>
lo
<
var
>.D.B.F.</
var
>
pars vide-
<
lb
/>
licet ſui toto. </
s
>
<
s
xml:id
="
echoid-s1792
"
xml:space
="
preserve
">Omnis
<
lb
/>
autem error in quem
<
lb
/>
Tartalea,
<
reg
norm
="
Iordanusque
"
type
="
simple
">Iordanusq;</
reg
>
<
lb
/>
lapſi fuerunt ab eo,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
<
lb
/>
<
handwritten
xlink:label
="
hd-0162-01
"
xlink:href
="
hd-0162-01a
"
number
="
10
"/>
lineas inclinationum
<
lb
/>
pro parallelis viciſſim
<
lb
/>
ſumpſerunt, emana-
<
lb
/>
uit.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1793
"
xml:space
="
preserve
">Septima propoſitio Tartaleæ, quæ eſt
<
reg
norm
="
quinta
"
type
="
simple
">ꝗnta</
reg
>
quæſtio Iordani mihi
<
reg
norm
="
videtur
"
type
="
simple
">videt̃</
reg
>
excipien-
<
lb
/>
da riſu, cum pondus ipſius
<
var
>.A.</
var
>
ponderi ipſius
<
var
>.B.</
var
>
exiſtens æquale, grauius ſit pondere
<
lb
/>
eiuſdem
<
var
>.B.</
var
>
ratione minoris aperturæ anguli contingentiæ in
<
var
>.A.</
var
>
quam in
<
var
>.B.</
var
>
in quo
<
lb
/>
idem error committitur, qui in præcedenti committebatur, cum ſcilicet ipſe putet
<
lb
/>
lineas
<
var
>.A.E.</
var
>
et
<
var
>.B.D.</
var
>
figuræ ab eo confictæ ſibi inuicem eſſe parallelas, quæ etiam ſi
<
lb
/>
æquidiſtantes eſſent (vnde angulus
<
var
>.E.A.G.</
var
>
minor eſſet angulo
<
var
>.D.B.F.</
var
>
) non eam ta
<
lb
/>
men ob cauſam huiuſmodiangulorum differentia cauſa eſſet differentiæ
<
reg
norm
="
grauitatum
"
type
="
context
">grauitatũ</
reg
>
<
lb
/>
ipſorum
<
var
>.A.</
var
>
et
<
var
>.B.</
var
>
ob ea quæ cap .4. huius tractatus poſui.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1794
"
xml:space
="
preserve
">Octaua autem propoſitio, quæ eſt .6. quæſtio Iordani Iongè melius demonſtratur
<
lb
/>
ab Archi. in .6. lib. primi de ponderibus, cum nec à Iordano, nec à Tartalæa probata
<
lb
/>
fuerit, cum ijdem non probauerint præcedentes, quas in dicta .8. </
s
>
<
s
xml:id
="
echoid-s1795
"
xml:space
="
preserve
">Tartalęa citat, qui
<
lb
/>
neque etiam probat nonam .10. 11. 12. et .13. cum ad pręcedentes probandas mini
<
lb
/>
mè acceſſerit.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1796
"
xml:space
="
preserve
">Quartadecima verò, quæ eſt .10. quęſtio Iordani, duas ob cauſas eſt falſa, quarum
<
lb
/>
vna eſt,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
(ſupponendo
<
var
>.A.D.E.G.B.</
var
>
eſſe vnum brachium librę et
<
var
>.A.</
var
>
punctum
<
reg
norm
="
centri
"
type
="
context
">cẽtri</
reg
>
<
lb
/>
eiuſdem, et
<
var
>.D.</
var
>
pondus ęquale ponderi
<
var
>.E.</
var
>
& lineas inclinationum
<
var
>.D.K.</
var
>
et
<
var
>.E.M.</
var
>
) an
<
lb
/>
guli
<
var
>.K.D.E.</
var
>
et
<
var
>.M.E.G.</
var
>
ſibi
<
reg
norm
="
inuicem
"
type
="
context
">inuicẽ</
reg
>
<
reg
norm
="
non
"
type
="
context
">nõ</
reg
>
ſunt ęquales; </
s
>
<
s
xml:id
="
echoid-s1797
"
xml:space
="
preserve
">
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
ille angulus ſit intrinſecus, hic
<
lb
/>
verò extrinſecus & oppoſitus dicto intrinſeco
<
reg
norm
="
vnius
"
type
="
simple
">vniꝰ</
reg
>
<
reg
norm
="
trianguli
"
type
="
context
">triãguli</
reg
>
terminati à.
<
var
>D.E.</
var
>
à
<
var
>.D.K.</
var
>
</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>