Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(156)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div340
"
type
="
chapter
"
level
="
2
"
n
="
3
">
<
div
xml:id
="
echoid-div367
"
type
="
section
"
level
="
3
"
n
="
14
">
<
p
>
<
pb
o
="
156
"
rhead
="
IO. BAPT. BENED.
"
n
="
168
"
file
="
0168
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0168
"/>
<
s
xml:id
="
echoid-s1854
"
xml:space
="
preserve
">
<
reg
norm
="
Sitque
"
type
="
simple
">Sitq;</
reg
>
ſemper diuiſum à linea
<
var
>.a.o.e.</
var
>
per medium, ſequitur communi quodam con-
<
lb
/>
ceptu, nullam nobis difficultatem oborituram, dictum centrum ad quam volueri-
<
lb
/>
mus partem ducendo, quemadmodum à qualibet alia figura, quæ perfectè rotunda
<
lb
/>
non eſſet, emergeret; </
s
>
<
s
xml:id
="
echoid-s1855
"
xml:space
="
preserve
">Vt
<
reg
norm
="
exempli
"
type
="
context
">exẽpli</
reg
>
gratia, ſi imaginabimur pentagonum
<
var
>.K.i.h.f.l.</
var
>
quie
<
lb
/>
ſcere
<
reg
norm
="
ſuper
"
type
="
simple
">ſuꝑ</
reg
>
<
reg
norm
="
eandem
"
type
="
context
">eandẽ</
reg
>
<
reg
norm
="
lineam
"
type
="
context
">lineã</
reg
>
<
var
>.a.b.K.</
var
>
ita ut
<
reg
norm
="
primum
"
type
="
context
">primũ</
reg
>
<
reg
norm
="
totum
"
type
="
context
">totũ</
reg
>
latus
<
var
>.i.K.</
var
>
in linea
<
var
>.b.K.</
var
>
<
reg
norm
="
extendatur
"
type
="
context simple
">extẽdat̃</
reg
>
,
<
reg
norm
="
ducen- do
"
type
="
context
">ducẽ-
<
lb
/>
do</
reg
>
poſteà centrum
<
var
>.o.</
var
>
(ponamus.) verſus
<
var
>.l.</
var
>
dubium non eſt, quin oporteat, vt dictum
<
lb
/>
centrum
<
var
>.o.</
var
>
à linea
<
var
>.b.d.</
var
>
eleuetur, ab
<
reg
norm
="
eademque
"
type
="
simple
">eademq;</
reg
>
magis diſtet, voluens ſe per
<
reg
norm
="
arcum
"
type
="
context
">arcũ</
reg
>
vnum
<
lb
/>
circuli,
<
reg
norm
="
qui
"
type
="
simple
">ꝗ</
reg
>
<
reg
norm
="
pro
"
type
="
simple
">ꝓ</
reg
>
ſuo ſemidiametro habeat
<
var
>.o.K.</
var
>
quę maior eſt ipſa
<
var
>.o.a.</
var
>
ex .18. li. primi Eu
<
lb
/>
cli. vnde ſi à puncto
<
var
>.K.</
var
>
imaginabimur lineam
<
var
>.K.c.</
var
>
reſpicientem centrum regionis
<
lb
/>
elementaris, dubium non eſt, quin ſi velimus transferre
<
reg
norm
="
centrum
"
type
="
context
">cẽtrum</
reg
>
hoc à priori ſitu
<
reg
norm
="
vſque
"
type
="
simple
">vſq;</
reg
>
<
lb
/>
ad dictam lineam, oporteat addere pondus parti ipſius
<
var
>.l.</
var
>
quæ à linea
<
var
>.K.c.</
var
>
fuit ſecta,
<
lb
/>
aut aliquid de ipſo pondere partis centri detrahere. </
s
>
<
s
xml:id
="
echoid-s1856
"
xml:space
="
preserve
">quod quibuſuis modis fiat, ar-
<
lb
/>
duum certè eſt ad efficiendum; </
s
>
<
s
xml:id
="
echoid-s1857
"
xml:space
="
preserve
">neque hoc etiam accidit figuræ perfectè rotundæ,
<
lb
/>
cum
<
reg
norm
="
centrum
"
type
="
context
">cẽtrum</
reg
>
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
perfectè in medio ipſius ponderis eſt, reperiatur ſemper in linea per-
<
lb
/>
pendiculari ipſi plano, in quo animaduertendum eſt,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
etiam ſi ipſum planum ap-
<
lb
/>
pellem; </
s
>
<
s
xml:id
="
echoid-s1858
"
xml:space
="
preserve
">pro plano tamen perfecto intelligi nolo, ſed pro ſuperficie perfectè
<
reg
norm
="
ſphaeri- ca
"
type
="
simple
">ſphęri-
<
lb
/>
ca</
reg
>
circa centrum à corporibus grauibus expetitum; </
s
>
<
s
xml:id
="
echoid-s1859
"
xml:space
="
preserve
">nam ratione magnæ amplitudi-
<
lb
/>
nis huiuſmodi ſuperficiei, nullam differentiam notatu dignam à perfecto aliquo pla
<
lb
/>
no exigui interualli ad curuitatem eiuſdem ſuperficiei imaginari poterimus. </
s
>
<
s
xml:id
="
echoid-s1860
"
xml:space
="
preserve
">Sed ut
<
lb
/>
redeamus ad ſermonem de reuolutione figuræ rotundæ ſuſceptum,
<
reg
norm
="
clarum
"
type
="
context
">clarũ</
reg
>
igitur erit
<
lb
/>
quamlibet minimam vim (vt ita dicam) quę trahat, aut impellat centrum
<
var
>.o.</
var
>
verſus
<
var
>.u.</
var
>
<
lb
/>
huiuſmodi figuram reuoluturam, cuius media pars ad trahendum, aut impellendum
<
lb
/>
punctum
<
var
>.e.</
var
>
ſufficiere; </
s
>
<
s
xml:id
="
echoid-s1861
"
xml:space
="
preserve
">Imaginemur autem
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
li
<
lb
/>
nea
<
var
>.n.o.u.</
var
>
eſſet libra
<
reg
norm
="
quędam
"
type
="
context
">quędã</
reg
>
in figura perfectè
<
lb
/>
<
figure
xlink:label
="
fig-0168-01
"
xlink:href
="
fig-0168-01a
"
number
="
226
">
<
image
file
="
0168-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0168-01
"/>
</
figure
>
rotunda
<
var
>.a.n.e.u.</
var
>
poſita, & vis, quę trahere cen
<
lb
/>
trum deberet, diuiſa eſſet per medium, cuius
<
lb
/>
medietas appenſa eſſet extremitati
<
var
>.u.</
var
>
diame-
<
lb
/>
tri
<
var
>.n.o.u.</
var
>
<
reg
norm
="
clarum
"
type
="
context
">clarũ</
reg
>
erit,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
abſque vlla difficultate
<
lb
/>
reuolueret figuram ſuper lineam
<
var
>.b.a.d.</
var
>
verſus
<
var
>.
<
lb
/>
d.</
var
>
quia huius vis, aut pondus
<
reg
norm
="
nullum
"
type
="
context
">nullũ</
reg
>
contra pon
<
lb
/>
dus haberet vltra centrum
<
var
>.o.</
var
>
uerſus
<
var
>.n.</
var
>
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
cen-
<
lb
/>
trum
<
var
>.o.</
var
>
perpetuo quieſcit
<
reg
norm
="
ſuper
"
type
="
simple
">ſuꝑ</
reg
>
. a. in linea
<
var
>.e.o.
<
lb
/>
a.</
var
>
per medium diuidente ſemper totum pon-
<
lb
/>
dus figurę ſuppoſitę. </
s
>
<
s
xml:id
="
echoid-s1862
"
xml:space
="
preserve
">Tantò facilius ergo tota
<
lb
/>
dicta vis ap
<
lb
/>
<
figure
xlink:label
="
fig-0168-02
"
xlink:href
="
fig-0168-02a
"
number
="
227
">
<
image
file
="
0168-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0168-02
"/>
</
figure
>
<
figure
xlink:label
="
fig-0168-03
"
xlink:href
="
fig-0168-03a
"
number
="
228
">
<
image
file
="
0168-03
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0168-03
"/>
</
figure
>
plicata cen
<
lb
/>
tro,
<
reg
norm
="
ipsum
"
type
="
context
">ipsũ</
reg
>
ver
<
lb
/>
ſus
<
var
>.u.</
var
>
<
reg
norm
="
trahens
"
type
="
context
">trahẽs</
reg
>
<
lb
/>
per lineam
<
lb
/>
<
reg
norm
="
parallelam
"
type
="
context
">parallelã</
reg
>
ip
<
lb
/>
ſi
<
var
>.a.d.</
var
>
<
reg
norm
="
dictam
"
type
="
context
">dictã</
reg
>
<
lb
/>
figuram re-
<
lb
/>
uolueret. </
s
>
<
s
xml:id
="
echoid-s1863
"
xml:space
="
preserve
">Et
<
lb
/>
ſi linea qua
<
lb
/>
dictum cen
<
lb
/>
trum trahi-
<
lb
/>
tur ab ipſo </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>