Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(178)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div387
"
type
="
chapter
"
level
="
2
"
n
="
4
">
<
div
xml:id
="
echoid-div411
"
type
="
section
"
level
="
3
"
n
="
15
">
<
p
>
<
s
xml:id
="
echoid-s2110
"
xml:space
="
preserve
">
<
pb
o
="
178
"
rhead
="
IO. BAPT. BENED.
"
n
="
190
"
file
="
0190
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0190
"/>
cies, & quæ inter corpor a
<
reg
norm
="
reperitur
"
type
="
simple
">reperit̃</
reg
>
: </
s
>
<
s
xml:id
="
echoid-s2111
"
xml:space
="
preserve
">Ariſtoteles igitur in eo defecit. </
s
>
<
s
xml:id
="
echoid-s2112
"
xml:space
="
preserve
">Quòd
<
reg
norm
="
autem
"
type
="
context
">autẽ</
reg
>
inter
<
lb
/>
ſuperficies non eadem ſit proportio, quæ inter corpora extat, ſi primo ad ſphęricas
<
lb
/>
mentem verterimus, intelligemus proportionem eam, quæ inter duas ſphæras repe
<
lb
/>
ritur triplam ſemper exiſtere ei, quæ eſt inter ipſarum diametros ex vltima .12. libr.
<
lb
/>
Euclid. </
s
>
<
s
xml:id
="
echoid-s2113
"
xml:space
="
preserve
">Eſt autem proportio, quæ eſt inter ſuperficies ſphęricas ęqualis ei, quæ eſt
<
lb
/>
ipſorum circulorum maiorum ex .16. lib. quinti, cum ex .31. primi de ſphæra & cy-
<
lb
/>
lindro Archimedis, omnis ſphærica ſuperficies quadrupla, ſit maiori circulo ipſius
<
lb
/>
ſphęræ, ſed proportio, quæ eſt inter dictos circulos, eſt dupla ei, quæ eſt inter
<
reg
norm
="
eorun- dem
"
type
="
context context
">eorũ-
<
lb
/>
dẽ</
reg
>
diametros ex .2. lib. 12. Euc. </
s
>
<
s
xml:id
="
echoid-s2114
"
xml:space
="
preserve
">ergo
<
reg
norm
="
proportio
"
type
="
simple
">ꝓportio</
reg
>
, quæ eſt inter corpora, ſeſquialtera erit
<
lb
/>
ei, quæ eſt ſuperficierum, & non æqualis, ut Ariſtoteles putauit. </
s
>
<
s
xml:id
="
echoid-s2115
"
xml:space
="
preserve
">Idem de corporibus
<
lb
/>
ſimilibus à ſuperficiebus planis terminatis dico, ratiocinando mediante .36. lib. 11.
<
lb
/>
et .18. ſexti, vnde cognoſcemus proportionem corporum, proportioni laterum, tri-
<
lb
/>
plam futuram, & ſuperficierum proportionem, laterum proportioni duplam. </
s
>
<
s
xml:id
="
echoid-s2116
"
xml:space
="
preserve
">Quare
<
lb
/>
corporum proportio, ei, quæ ſuperficierum eſt, ſeſquialtera erit, ita ut ſi velocitates
<
lb
/>
extitiſſent ad inuicem proportionatæ, vt ſuperficies, proportio velocitatis corporis
<
var
>.
<
lb
/>
B.</
var
>
ei, quæ eſt corporis
<
var
>.C.</
var
>
fuiſſet ſubſeſquialtera proportioni corporum, & non æqua
<
lb
/>
lis eidem.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div412
"
type
="
section
"
level
="
3
"
n
="
16
">
<
head
xml:id
="
echoid-head273
"
style
="
it
"
xml:space
="
preserve
">Fdipſum aliter demonſtr atur.</
head
>
<
head
xml:id
="
echoid-head274
"
xml:space
="
preserve
">CAP. XVI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2117
"
xml:space
="
preserve
">ALio quoque modo probari poteſt non eſſe in vniuerſum verum id, quod Ari-
<
lb
/>
ſtoteles in prima parte capitis vltimi lib. 7. phyſicorum ait, ſic ſcribens.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2118
"
xml:space
="
preserve
">Si
<
var
>.A.</
var
>
quidem ſit id quod mouet
<
var
>.B.</
var
>
verò id quod mouetur, et
<
var
>.C.</
var
>
ſit longitudo per
<
lb
/>
quam, et
<
var
>.D.</
var
>
tempus in quo eſt motum, in tempore nimirum ęquali, potentia æqua-
<
lb
/>
lis
<
var
>.A.</
var
>
dimidium ipſius
<
var
>.B.</
var
>
per duplum mouebit ipſius
<
var
>.C.</
var
>
per ipſum autem
<
var
>.C.</
var
>
in dimi
<
lb
/>
dio temporis
<
var
>.D.</
var
>
ſic enim erit rationis ſimilitudo.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2119
"
xml:space
="
preserve
">Sit ergo corpus
<
var
>.o.</
var
>
ſeptimi capitis pondere æquali corpori
<
var
>.u.</
var
>
eiuſdem capitis, ſed
<
lb
/>
area corporea minusipſo
<
var
>.u.</
var
>
pro medietate. </
s
>
<
s
xml:id
="
echoid-s2120
"
xml:space
="
preserve
">Simile tamen figura. </
s
>
<
s
xml:id
="
echoid-s2121
"
xml:space
="
preserve
">Imaginemur
<
reg
norm
="
nunc
"
type
="
context
">nũc</
reg
>
<
lb
/>
tertium aliud corpus omogeneum ipſi
<
var
>.u.</
var
>
quod ſit
<
var
>.i.</
var
>
magnitudine & figura ſimile ipſi
<
lb
/>
o. vnde minor erit ipſo
<
var
>.u.</
var
>
pro media parte, & hanc ob cauſam ipſum
<
var
>.u.</
var
>
erit duplo ma
<
lb
/>
gis graue, quàm ipſum
<
var
>.i.</
var
>
& per conſequens ipſum quoque
<
var
>.o.</
var
>
duplo grauius erit
<
reg
norm
="
quam
"
type
="
context
">quã</
reg
>
<
lb
/>
ſit ipſum
<
var
>.i.</
var
>
ex .7. libr. quinti Euclidis. </
s
>
<
s
xml:id
="
echoid-s2122
"
xml:space
="
preserve
">Ipſum ergo corpus
<
var
>.o.</
var
>
duplo velocius erit,
<
lb
/>
quàm ipſum
<
var
>.i.</
var
>
ex primo ſuppoſito cap .2. huius lib. </
s
>
<
s
xml:id
="
echoid-s2123
"
xml:space
="
preserve
">Vnde ex .9. quinti, velocitas ipſius
<
lb
/>
i. æqualis eſſet ei, quæ eſt ipſius u. cum Ariſtoteles ſcribat
<
var
>.o.</
var
>
quoque futurum duplo
<
lb
/>
velocius ipſo
<
var
>.u.</
var
>
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
cap .7. huius lib. falſum eſſe demonſtraui.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div413
"
type
="
section
"
level
="
3
"
n
="
17
">
<
head
xml:id
="
echoid-head275
"
style
="
it
"
xml:space
="
preserve
">De alio Aristo. lapſu.</
head
>
<
head
xml:id
="
echoid-head276
"
xml:space
="
preserve
">CAP. XVII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2124
"
xml:space
="
preserve
">SCribit Ariſtoteles in ultimo cap. lib. 7. phyſicorum in hunc modum.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2125
"
xml:space
="
preserve
">Si duo quædam ſeorſum per tantum ſpatium tanto tempore duo ſeorſum pon
<
lb
/>
dera mouent, & compoſita per longitudinem æqualem,
<
reg
norm
="
ęqualiuem
"
type
="
context
">ęqualiuẽ</
reg
>
in tempore, com-
<
lb
/>
poſitum ex ponderibus
<
reg
norm
="
vtriſque
"
type
="
simple
">vtriſq;</
reg
>
mouebunt, eſt enim in eis eadem ratio.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>