Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(181)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div387
"
type
="
chapter
"
level
="
2
"
n
="
4
">
<
div
xml:id
="
echoid-div418
"
type
="
section
"
level
="
3
"
n
="
20
">
<
p
>
<
s
xml:id
="
echoid-s2149
"
xml:space
="
preserve
">
<
pb
o
="
181
"
rhead
="
DISPVTATIONES.
"
n
="
193
"
file
="
0193
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0193
"/>
reuera locus corpori adęquatus, cum corpus in interuallum ſuperſiciale non intret,
<
lb
/>
quam @is interuallum corporeum ingrediatur. </
s
>
<
s
xml:id
="
echoid-s2150
"
xml:space
="
preserve
">Et hoc modo
<
reg
norm
="
nullum
"
type
="
context
">nullũ</
reg
>
eſt corpus, quod
<
lb
/>
in m@ do aut extra mundum ( dicat autem Ariſtoteles quicquid voluerit ) locum
<
lb
/>
ſuum non habeat.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div419
"
type
="
section
"
level
="
3
"
n
="
21
">
<
head
xml:id
="
echoid-head283
"
style
="
it
"
xml:space
="
preserve
">V
<
unsure
/>
trum bene Aristoteles ſenſerit de infinito.</
head
>
<
head
xml:id
="
echoid-head284
"
xml:space
="
preserve
">CAP. XXI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2151
"
xml:space
="
preserve
">TRactans Ariſtoteles in fine quinti cap. lib. 3. phyſicorum de infinito ait, impoſ
<
lb
/>
ſibile cum ſit inuenire locum infinitum, & omne corpus in loco cum ſit, impoſ
<
lb
/>
ſibile quoque eſſe in rerum natura aliquod: </
s
>
<
s
xml:id
="
echoid-s2152
"
xml:space
="
preserve
">infinitum corpus reperiri. </
s
>
<
s
xml:id
="
echoid-s2153
"
xml:space
="
preserve
">Omittamus
<
lb
/>
quòd cum Ariſtoteles debuerit beneficio loci deſtruere infinitum, ordine peruerſo
<
lb
/>
de infinito prius, quàm de loco diſputationem inſtituat; </
s
>
<
s
xml:id
="
echoid-s2154
"
xml:space
="
preserve
">ſed dicamus ipſum intelli-
<
lb
/>
gere de infinito corporeo, & cum probauerimus corporis locum eſſe corporeum in
<
lb
/>
teruallum, non autem ſuperficiem, neque opus ſit in definitione interualli mentio
<
lb
/>
nem aliquam facere terminorum, vnde ipſum infinitum eſſe poteſt, neque aliqua ra
<
lb
/>
tione de hac re dubitari poteſt; </
s
>
<
s
xml:id
="
echoid-s2155
"
xml:space
="
preserve
">hoc modo nullum inconueniens ſequeretur, quòd
<
lb
/>
extra cęlum reperiri poſſit corpus aliquod infinitum, quamuis, id ipſe nulla euiden-
<
lb
/>
ti ratione inductus perneget. </
s
>
<
s
xml:id
="
echoid-s2156
"
xml:space
="
preserve
">Senſit quoque, abſque eo,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
aliquam rationem propo
<
lb
/>
nat, aliquid extra cœlum reperiri quemadmodum apparet ex fine cap .9. lib. primi
<
lb
/>
de cœlo, cum etiam ait cap .8. lib. 8. phyſicorum, infinitas partes alicuius continui eſ-
<
lb
/>
ſe ſolum in potentia, non item in actu, hoc non eſt illico concedendum, quia ſi omne
<
lb
/>
totum continuum, & re ipſa exiſtens, in actu eſt, omnis quoque eius pars erit in actu,
<
lb
/>
quia ſtultum eſſet credere, ea quæ actu ſunt, ex ijs, quæ potentia exiſtunt, componi.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2157
"
xml:space
="
preserve
">Neque etiam dicendum eſt continuationem earundem partium efficere, vt poten-
<
lb
/>
tia ſint ipſæ partes, & omni actu priuatæ; </
s
>
<
s
xml:id
="
echoid-s2158
"
xml:space
="
preserve
">Sit exempli gratia linea recta
<
var
>.a.u.</
var
>
continua
<
lb
/>
quæ deinde diuidatur in puncto
<
var
>.e.</
var
>
per æqualia, dubium non eſt, quin ante
<
reg
norm
="
diuiſionem
"
type
="
context
">diuiſionẽ</
reg
>
,
<
lb
/>
medietas
<
var
>.a.e.</
var
>
tam in actu (licet coniuncta cum alia
<
var
>.e.u.</
var
>
) reperiretur, quàm totum .2.
<
lb
/>
u. licet à ſenſu diſtincta non eſſet. </
s
>
<
s
xml:id
="
echoid-s2159
"
xml:space
="
preserve
">Idem affirmo de medietate
<
var
>.a.e.</
var
>
ideſt de quarta
<
lb
/>
parte totius
<
var
>.a.u.</
var
>
& pariter de octaua, de milleſima, & de quauis, ita vt eſſentia actua
<
lb
/>
lis infiniti hoc modo tutò concedi poſſit,
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
ita ſit in natura. </
s
>
<
s
xml:id
="
echoid-s2160
"
xml:space
="
preserve
">Sed peius etiam ſenſit
<
lb
/>
Ariſtoteles eodem loco capitis quinti lib. 3. phyſicorum, negando infinitum poſſe
<
lb
/>
connumerari inter quantitates, dicens vnam aliquam quantitatem intelligi vt cubi
<
lb
/>
tum, tricubitum, & cætera; </
s
>
<
s
xml:id
="
echoid-s2161
"
xml:space
="
preserve
">vbi non conſiderat eadem etiam ratione intelligi poſſe
<
lb
/>
aliquam quantitatem
<
reg
norm
="
infinitorum
"
type
="
context
">infinitorũ</
reg
>
cubitorum, & in quantitatis definitione nullam eſ-
<
lb
/>
ſe neceſſitatem terminorum, vt exempli gratia in definitione numeri, non eſt neceſ
<
lb
/>
ſitas alicuius determinati numeri, quia multitudo, non minus infinita, quàm finita,
<
lb
/>
intelligi poteſt. </
s
>
<
s
xml:id
="
echoid-s2162
"
xml:space
="
preserve
">Vbi poſteà cap .8. libr .4. phyſicorum ait nullam eſſe differentiam
<
lb
/>
inter infinitum, & vacuum, reuera nihil abſurdius hoc dicere fingereue poterat.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>