Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(202)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div441
"
type
="
chapter
"
level
="
2
"
n
="
5
">
<
div
xml:id
="
echoid-div454
"
type
="
section
"
level
="
3
"
n
="
2
">
<
div
xml:id
="
echoid-div462
"
type
="
section
"
level
="
4
"
n
="
7
">
<
p
>
<
s
xml:id
="
echoid-s2451
"
xml:space
="
preserve
">
<
pb
o
="
202
"
rhead
="
IO. BAPT. BENED.
"
n
="
214
"
file
="
0214
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0214
"/>
poſtulato. </
s
>
<
s
xml:id
="
echoid-s2452
"
xml:space
="
preserve
">Sed cum proportio
<
var
>.a.</
var
>
ad
<
var
>.b.</
var
>
ęqualis ſit
<
lb
/>
<
figure
xlink:label
="
fig-0214-01
"
xlink:href
="
fig-0214-01a
"
number
="
265
">
<
image
file
="
0214-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0214-01
"/>
</
figure
>
proportioni
<
var
>.c.</
var
>
ad
<
var
>.d.</
var
>
communis autem
<
var
>.b.c</
var
>
: propor
<
lb
/>
tio. </
s
>
<
s
xml:id
="
echoid-s2453
"
xml:space
="
preserve
">itaque
<
var
>.a.</
var
>
ad
<
var
>.c.</
var
>
æqualis erit
<
var
>.b.</
var
>
ad
<
var
>.d.</
var
>
ex ſecunda
<
lb
/>
parte .2. poſtulati compoſitè, & ſic habebimus pro
<
lb
/>
poſitum, ita quòd quotieſcunque
<
reg
norm
="
dabuntur
"
type
="
context
">dabũtur</
reg
>
.4.
<
reg
norm
="
quam
"
type
="
context
">quã</
reg
>
<
lb
/>
titates ex una parte proportionales, illæ ipſæ ex
<
lb
/>
altera proportionales erunt.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div465
"
type
="
section
"
level
="
4
"
n
="
8
">
<
head
xml:id
="
echoid-head348
"
xml:space
="
preserve
">THEOR. XVII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2454
"
xml:space
="
preserve
">DEcimiſeptimi theorematis hæc eſt demonſtratio. </
s
>
<
s
xml:id
="
echoid-s2455
"
xml:space
="
preserve
">Ita ſe ha beat
<
var
>a.c.b.</
var
>
ad
<
var
>.c.
<
lb
/>
b.</
var
>
ſicut ſe habet
<
var
>.d.f.e.</
var
>
ad
<
var
>.f.e</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2456
"
xml:space
="
preserve
">Probo ita ſe habere
<
var
>.a.c.</
var
>
ad
<
var
>.c.b.</
var
>
ſicut ſe habet
<
var
>.d.
<
lb
/>
f.</
var
>
ad
<
var
>.f.e</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2457
"
xml:space
="
preserve
">Cogitemus itaque alterum terminum ſcilicet
<
var
>.n.f.</
var
>
qui ſic ſe habeat. ad
<
var
>.f.e.</
var
>
<
lb
/>
ſicut ſe habet
<
var
>.a.c.</
var
>
ad
<
var
>.c.b</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2458
"
xml:space
="
preserve
">Quare ex præcedenti theoremate ita ſe habebit
<
var
>.a.c.</
var
>
ad
<
var
>.n.
<
lb
/>
f.</
var
>
ſicut ſe habet
<
var
>.c.b.</
var
>
ad
<
var
>.f.e.</
var
>
& ex .8 poſtulato ita ſe habebit
<
var
>.a.c.b.</
var
>
ad
<
var
>.n.f.e.</
var
>
ſicut ſe ha-
<
lb
/>
bet
<
var
>.c.b.</
var
>
ad
<
var
>.f.e</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2459
"
xml:space
="
preserve
">Sed cum ex præſuppoſito ita ſe habeat
<
var
>.a.c.b.</
var
>
ad
<
var
>.c.b.</
var
>
ſicut ſe habet
<
var
>.
<
lb
/>
d.f.e.</
var
>
ad
<
var
>.f.e.</
var
>
ideo ex præcedenti theoremate ita ſe habebit
<
var
>.a.c.b.</
var
>
ad
<
var
>.d.f.e.</
var
>
ſicut ſe ha
<
lb
/>
bet
<
var
>.c.b.</
var
>
ad
<
var
>.f.e.</
var
>
demonſtratum autem eſt ita ſe habere
<
var
>.c.b.</
var
>
ad
<
var
>.f.e.</
var
>
ſicut ſe habet
<
var
>.a.c.b.</
var
>
<
lb
/>
ad
<
var
>.n.f.e</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2460
"
xml:space
="
preserve
">Quare ex .7. poſtulato proportio
<
var
>.a.c.b.</
var
>
ad
<
var
>.d.f.</
var
>
e, æqualis erit proportioni
<
var
>.a.
<
lb
/>
c.b.</
var
>
ad
<
var
>.n.f.e.</
var
>
& ex .4. poſtulato
<
var
>.d.f.e.</
var
>
æqualis erit
<
var
>.n.f.e</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2461
"
xml:space
="
preserve
">Itaque ex 3. poſtulato primi
<
lb
/>
Euclidis
<
var
>.f.d.</
var
>
æqualis erit
<
var
>.n.f</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2462
"
xml:space
="
preserve
">Quamob
<
lb
/>
rem proportio
<
var
>.a.c.</
var
>
ad
<
var
>.d.f.</
var
>
ęqualis erit
<
lb
/>
<
figure
xlink:label
="
fig-0214-02
"
xlink:href
="
fig-0214-02a
"
number
="
266
">
<
image
file
="
0214-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0214-02
"/>
</
figure
>
proportioni
<
var
>.a.c.</
var
>
ad
<
var
>.n.f.</
var
>
ex ſecunda par-
<
lb
/>
te tertij axiomatis præmiſſi. </
s
>
<
s
xml:id
="
echoid-s2463
"
xml:space
="
preserve
">Igitur ita
<
lb
/>
ſe habebit
<
var
>.a.c.</
var
>
ad
<
var
>.d.f.</
var
>
ſicut
<
var
>.c.b.</
var
>
ad
<
var
>.f.e.</
var
>
ex
<
lb
/>
7. poſtulato. </
s
>
<
s
xml:id
="
echoid-s2464
"
xml:space
="
preserve
">& ſic ex præcedenti theo-
<
lb
/>
remate ita ſe habebit
<
var
>.a.c.</
var
>
ad
<
var
>.c.b.</
var
>
ſicut
<
var
>.d.f.</
var
>
ad
<
var
>.f.e.</
var
>
quod erat propoſitum: </
s
>
<
s
xml:id
="
echoid-s2465
"
xml:space
="
preserve
">Quotieſ-
<
lb
/>
cunque igitur dabuntur .4. quantitates coniunctim proportionales, diuiſim quoque
<
lb
/>
proportionales erunt.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div467
"
type
="
section
"
level
="
4
"
n
="
9
">
<
head
xml:id
="
echoid-head349
"
xml:space
="
preserve
">THEOREM. XVIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2466
"
xml:space
="
preserve
">THeorema .18. hac ratione demonſtrari poteſt. </
s
>
<
s
xml:id
="
echoid-s2467
"
xml:space
="
preserve
">Detur proportio
<
var
>.a.c.</
var
>
ad
<
var
>.c.b.</
var
>
ſi-
<
lb
/>
milis ei quæ eſt
<
var
>.d.f.</
var
>
ad
<
var
>.f.e.</
var
>
probo ita ſe habere
<
var
>.a.c.b.</
var
>
ad
<
var
>.c.b.</
var
>
ſicut ſe habet
<
var
>.d.f.
<
lb
/>
e.</
var
>
ad
<
var
>.f.e</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2468
"
xml:space
="
preserve
">In primis notum eſt ex .16. theoremate ita ſe habiturum,
<
var
>a.c.</
var
>
ad
<
var
>.d.f.</
var
>
ſi
<
lb
/>
cut
<
var
>.c.b.</
var
>
ad
<
var
>.f.e</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2469
"
xml:space
="
preserve
">Quare ex .8. poſtulato ita
<
lb
/>
ſe habebit
<
var
>.a.c.b.</
var
>
ad
<
var
>.d.f.e.</
var
>
ſicut
<
var
>.c.b.</
var
>
ad
<
var
>.f.e.</
var
>
<
lb
/>
<
figure
xlink:label
="
fig-0214-03
"
xlink:href
="
fig-0214-03a
"
number
="
267
">
<
image
file
="
0214-03
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0214-03
"/>
</
figure
>
</
s
>
<
s
xml:id
="
echoid-s2470
"
xml:space
="
preserve
">Itaque ex .16. theoremate ita ſe habebit
<
var
>.
<
lb
/>
a.c.b.</
var
>
ad
<
var
>.c.b.</
var
>
ſicut
<
var
>.d.f.e.</
var
>
ad
<
var
>.f.e</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2471
"
xml:space
="
preserve
">Quod erat
<
lb
/>
propoſitum. </
s
>
<
s
xml:id
="
echoid-s2472
"
xml:space
="
preserve
">Quotieſcunque igitur .4.
<
lb
/>
quantitates dabuntur vnius
<
reg
norm
="
eiuſdemque
"
type
="
simple
">eiuſdemq́;</
reg
>
generis diſiunctim proportionales, coniun-
<
lb
/>
ctim quoque proportionales erunt.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div469
"
type
="
section
"
level
="
4
"
n
="
10
">
<
head
xml:id
="
echoid-head350
"
xml:space
="
preserve
">THEOREM. XIX.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2473
"
xml:space
="
preserve
">THeorema .19. ſatis quidem apud Euclidem demonſtratur: </
s
>
<
s
xml:id
="
echoid-s2474
"
xml:space
="
preserve
">eius tamentertia
<
lb
/>
pars commodius hac ratione demonſtrari poterit (nempe) quod cum ſit pro- </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>