Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(251)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div495
"
type
="
section
"
level
="
3
"
n
="
5
">
<
div
xml:id
="
echoid-div501
"
type
="
letter
"
level
="
4
"
n
="
3
">
<
p
>
<
s
xml:id
="
echoid-s3163
"
xml:space
="
preserve
">
<
pb
o
="
251
"
rhead
="
EPISTOLAE.
"
n
="
263
"
file
="
0263
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0263
"/>
terius differentiæ quam ſupra inuenerimus.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3164
"
xml:space
="
preserve
">Superius enim dixinon eſſe ponendum polum in
<
var
>.B.</
var
>
eo quod
<
var
>.B.C.</
var
>
ſit gra .89. mi
<
num
value
="
30
">.
<
lb
/>
30.</
num
>
vnde nobis prodijſſet triangulus
<
var
>.f.C.D.</
var
>
trium valde paruorum laterum, quorum
<
lb
/>
latus
<
var
>.C.D.</
var
>
eſſet gra
<
var
>.o.</
var
>
mi .30. & latus
<
var
>.f.l.</
var
>
gra
<
var
>.o.</
var
>
mi .55. & latus
<
var
>.F.D.</
var
>
gra
<
var
>.o.</
var
>
mi .47. vn-
<
lb
/>
de angulus
<
var
>.f.</
var
>
gra .32. min .40. falſus eſſet, qui
<
reg
norm
="
quidem
"
type
="
context
">quidẽ</
reg
>
poſtea nobis daret
<
var
>.D.E.</
var
>
gra .45
<
lb
/>
minu .16. falſum ſimiliter.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div503
"
type
="
letter
"
level
="
4
"
n
="
4
">
<
head
xml:id
="
echoid-head378
"
style
="
it
"
xml:space
="
preserve
">De paßione circuli bactenus incognita.</
head
>
<
head
xml:id
="
echoid-head379
"
xml:space
="
preserve
">AD EVNDEM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3165
"
xml:space
="
preserve
">DVbitandum quidem
<
reg
norm
="
non
"
type
="
context
">nõ</
reg
>
eſt quin paſſiones circuli innumerabiles penè ſint, quę
<
lb
/>
quidem omnes ferè caſu inueniuntur, vt mihi nunc accidit, quam tibi mitto,
<
lb
/>
hæc autem eſt, quòd quadratum lineæ
<
var
>.a.g.</
var
>
in figura hic ſubſcripta ſemper æquale
<
lb
/>
eſt ei producto, quod fit ex
<
var
>.a.e.</
var
>
in diametro circuli
<
var
>.g.c.b.</
var
>
ſimul ſumpto cum quadra
<
lb
/>
to inſcriptibili in dicto circulo, & ſimul cum quadrato lineæ
<
var
>.a.b.</
var
>
<
reg
norm
="
contingentis
"
type
="
context
">contingẽtis</
reg
>
ipſum
<
lb
/>
circulum, ſupponendo
<
var
>.a.g.</
var
>
per centrum ipſius circuli tranſire.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3166
"
xml:space
="
preserve
">Pro cuius demonſtratione à centro
<
var
>.e.</
var
>
duco ſemidiametrum
<
var
>.e.c.</
var
>
<
reg
norm
="
perpendicularem
"
type
="
context
">perpendicularẽ</
reg
>
<
lb
/>
ipſi
<
var
>.g.a.</
var
>
& à puncto
<
var
>.c.</
var
>
ad
<
var
>.a.</
var
>
duco
<
var
>.c.a.</
var
>
quæ ſecabit circunferentiam ipſius circuli in
<
reg
norm
="
pum
"
type
="
context
">pũ</
reg
>
<
lb
/>
cto
<
var
>.d.</
var
>
eo, quod angulus
<
var
>.c.</
var
>
acutus eſt. </
s
>
<
s
xml:id
="
echoid-s3167
"
xml:space
="
preserve
">Nunc ex .35. tertij, productum
<
var
>.c.a.</
var
>
in
<
var
>.a.d.</
var
>
æqua
<
lb
/>
le eſt quadrato
<
var
>.a.b.</
var
>
productum autem
<
var
>.a.c.</
var
>
in
<
var
>.d.c.</
var
>
æquale eſt quadrato inſcriptibili in
<
lb
/>
circulo
<
var
>.g.c.b.</
var
>
ex .130. primi Vitellionis,
<
reg
norm
="
in
"
type
="
wordlist
">ĩ</
reg
>
qua propoſitione ipſe Vitellio ſupplet pro
<
lb
/>
eo, quod in quinta propoſitione libri de lineis ſpirabilibus Archimedis deſideratur,
<
lb
/>
ſed quadratum
<
var
>.a.c.</
var
>
æquale eſt ijs duobus productis. per .2. ſecundi Eucli. ergo qua-
<
lb
/>
dratum
<
var
>.a.c.</
var
>
æquale erit quadrato inſcriptibili in circulo
<
var
>.d.c.g.</
var
>
& quadrato
<
var
>.a.b.</
var
>
ſed
<
lb
/>
quadratum lineæ
<
var
>.a.c.</
var
>
æquale eſt duobus quadratis, hoc eſt lineæ
<
var
>.a.e.</
var
>
& lineæ
<
var
>.e.c.</
var
>
ex
<
lb
/>
pitagorica, </
s
>
<
s
xml:id
="
echoid-s3168
"
xml:space
="
preserve
">quare ex communi conceptu duo quadrata lineæ
<
var
>.a.e.</
var
>
& lineę
<
var
>.e.c.</
var
>
hoc eſt
<
lb
/>
lineæ
<
var
>.e.g.</
var
>
quod idem eſt, æqualia erunt duobus iam dictis, hoc eſt inſcriptibili,
<
lb
/>
& ei, quod fit ex
<
var
>.a.b.</
var
>
ſed quadratum lineæ
<
var
>.a.g.</
var
>
æquale eſt quadrato lineæ
<
var
>.a.e.</
var
>
& qua
<
lb
/>
drato quod fit ex
<
var
>.e.g.</
var
>
& duplo illius quod fit ex
<
var
>.a.e.</
var
>
in
<
var
>.e.g.</
var
>
hoc eſt producto
<
var
>.a.e.</
var
>
in
<
lb
/>
diametrum. </
s
>
<
s
xml:id
="
echoid-s3169
"
xml:space
="
preserve
">Quare quadratum lineæ
<
var
>.a.g.</
var
>
æquale eſt quadrato circunſcriptibili, &
<
lb
/>
quadrato lineæ
<
var
>.a.b.</
var
>
& producto lineæ
<
var
>.a.e.</
var
>
in diametrum circuli
<
var
>.d.c.g</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3170
"
xml:space
="
preserve
">Breuiori etiam methodo demonſtrare poſſu
<
lb
/>
<
figure
xlink:label
="
fig-0263-01
"
xlink:href
="
fig-0263-01a
"
number
="
297
">
<
image
file
="
0263-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0263-01
"/>
</
figure
>
mus quadrata lineæ
<
var
>.a.e.</
var
>
et
<
var
>.e.g.</
var
>
æqualia eſ-
<
lb
/>
ſe quadrato circunſcriptibili, & quadrato lineæ
<
var
>.
<
lb
/>
a.b.</
var
>
ducendo lineam
<
var
>.e.b.</
var
>
quæ æqualis eſt lineæ
<
var
>.
<
lb
/>
e.g.</
var
>
tali methodo, hoc eſt, conſiderando, quod
<
lb
/>
quadratum inſcriptibile ſemper duplum eſt qua
<
lb
/>
drato ſemidiametri, vel medietati circumſcri-
<
lb
/>
ptibili, quod quidem nihil aliud eſt, niſi æquale
<
lb
/>
eſſe ijs duobus quadratis, hoc eſt lineæ
<
var
>.e.b.</
var
>
& li-
<
lb
/>
neæ
<
var
>.e.g.</
var
>
ſed quadratum lineæ
<
var
>.a.e.</
var
>
æquale eſt iis
<
lb
/>
duobus quadratis, hoc eſt lineæ
<
var
>.a.b.</
var
>
& lineæ
<
var
>.b.e.</
var
>
vnde quadrat um lineæ
<
var
>.a.e.</
var
>
cum
<
lb
/>
quadrato lineæ
<
var
>.e.g.</
var
>
æquale eſt quadrato circunſcriptibili, ſimul collecto cum qua-
<
lb
/>
drato lineæ
<
var
>.a.b</
var
>
.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>