Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(252)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div495
"
type
="
section
"
level
="
3
"
n
="
5
">
<
div
xml:id
="
echoid-div503
"
type
="
letter
"
level
="
4
"
n
="
4
">
<
pb
o
="
252
"
rhead
="
IO. BAPT. BENED.
"
n
="
264
"
file
="
0264
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0264
"/>
</
div
>
<
div
xml:id
="
echoid-div505
"
type
="
letter
"
level
="
4
"
n
="
5
">
<
head
xml:id
="
echoid-head380
"
style
="
it
"
xml:space
="
preserve
">Demonstrationes quarundam propoſitionum de quibus agit
<
lb
/>
Cardanus capite primo libro .16. de
<
lb
/>
ſubtilitate.</
head
>
<
head
xml:id
="
echoid-head381
"
xml:space
="
preserve
">AD EVNDEM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3171
"
xml:space
="
preserve
">EA quæ Cardanus in primo cap. lib. 16. de ſubtilitate ita ſcribit, quod ſi diame-
<
lb
/>
tros producatur extra quantumlibet, alia verò diametro in centro ſecetur ad
<
lb
/>
rectos, ex huius fine
<
reg
norm
="
&c.
"
type
="
unresolved
">&c.</
reg
>
quæ quidem ſecundum illum eſt vndecima proprietas cir
<
lb
/>
culi, quoniam te id non intelligere ſcribis,
<
reg
norm
="
idemque
"
type
="
simple
">idemq́;</
reg
>
dicis etiam de duodecima, & ſi-
<
lb
/>
militer de tribus illis paſſionibus, quas ipſæ communes facit circulo, defectioni, ſeu
<
lb
/>
ellipſi, & hyperboli, tibi breuiter reſpondebo.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3172
"
xml:space
="
preserve
">Circa vndecimam proprietatem circuli verum dicit. </
s
>
<
s
xml:id
="
echoid-s3173
"
xml:space
="
preserve
">Imaginemur circulum
<
var
>.p.
<
lb
/>
d.q.</
var
>
à duabus diametris, inuicem ad angulos rectos coniunctis, diuiſum
<
var
>.p.d.</
var
>
et
<
var
>.d.g.</
var
>
di
<
lb
/>
uidatur enim quarta
<
var
>.q.d.</
var
>
per quot partes æquales volueris, mediantibus punctis
<
var
>.b.a.
<
lb
/>
o.</
var
>
<
reg
norm
="
ducanturque
"
type
="
simple
">ducanturq́;</
reg
>
ab ijſdem punctis tot perpendiculares diametro
<
var
>.d.g.</
var
>
quæ ſint
<
var
>.b.m.a.n.</
var
>
<
lb
/>
et
<
var
>.o.s.</
var
>
quæ quidem erunt parallelæ diametro
<
var
>.q.p.</
var
>
coniungatur deinde extremitas
<
var
>.d.</
var
>
<
lb
/>
diametri
<
var
>.d.g.</
var
>
cum primo puncto
<
var
>.b.</
var
>
& protrahatur
<
var
>.d.b.</
var
>
vſque ad concurſum cum diz
<
lb
/>
metro
<
var
>.p.q.</
var
>
protracto in puncto, h. </
s
>
<
s
xml:id
="
echoid-s3174
"
xml:space
="
preserve
">Nunc dico
<
var
>.q.h.</
var
>
quæ adiacet diametro
<
var
>.q.p.</
var
>
æqua-
<
lb
/>
lem eſſe omnibus dictis perpendicularibus, quapropter coniungantur puncta
<
var
>.m.a</
var
>
:
<
lb
/>
<
var
>n.o.</
var
>
et
<
var
>.s.q.</
var
>
& producantur vſque ad adiacentem diametro
<
var
>.q.p.</
var
>
in punctis
<
var
>.c.</
var
>
et
<
var
>.e.</
var
>
vn
<
lb
/>
de habebimus angulos
<
var
>.b.a.o.q.</
var
>
inuicem æquales ex .26. tertij, cum verò
<
var
>.o.s.a.n.</
var
>
et
<
lb
/>
<
var
>b.m.</
var
>
parallelæ ſint ipſi
<
var
>.p.h</
var
>
. </
s
>
<
s
xml:id
="
echoid-s3175
"
xml:space
="
preserve
">tunc anguli
<
var
>.b.h.c</
var
>
:
<
var
>a.c.e</
var
>
: et
<
var
>.o.e.q.</
var
>
æquales erunt angulis
<
var
>.d.
<
lb
/>
b.m</
var
>
:
<
var
>m.a.n.</
var
>
et
<
var
>.n.o.s.</
var
>
ex .29. primi: </
s
>
<
s
xml:id
="
echoid-s3176
"
xml:space
="
preserve
">quare anguli
<
var
>.h.c.e.q.</
var
>
erunt inuicem æquales, vnde
<
lb
/>
ex .28. eiuſdem
<
var
>.b.h</
var
>
:
<
var
>m.c</
var
>
:
<
var
>n.e.</
var
>
et
<
var
>.s.q.</
var
>
erunt
<
reg
norm
="
inuicem
"
type
="
context
">inuicẽ</
reg
>
parallelę, & ex .34.
<
var
>e.q.</
var
>
æqualis erit
<
var
>.
<
lb
/>
o.s.</
var
>
et
<
var
>.e.c.</
var
>
æqualis
<
var
>.n.a.</
var
>
et
<
var
>.m.b.</
var
>
æqualis
<
var
>.c.h.</
var
>
verum eſt igitur propoſitum.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3177
"
xml:space
="
preserve
">Duodecima vero
<
reg
norm
="
proprietas
"
type
="
simple
">ꝓprietas</
reg
>
eſt, ut ſi fuerit circulus
<
var
>.a.b.e.q.</
var
>
cuius duo diametriad
<
lb
/>
rectos coniuncti ſint
<
var
>.a.e.</
var
>
et
<
var
>.q.b.</
var
>
& diameter
<
var
>.a.e.</
var
>
protractus indeterminatè ad partem
<
lb
/>
e. </
s
>
<
s
xml:id
="
echoid-s3178
"
xml:space
="
preserve
">tunc ſi ab extremo
<
var
>.b.</
var
>
diametri
<
var
>.q.b.</
var
>
ducta fuerit
<
var
>.b.n.u.</
var
>
extra circulum, ſeu
<
var
>.b.u.n.</
var
>
in
<
lb
/>
tra circulum, vt in ſubiecta figura patet, ita vt ſecta ſit à circunferentia circuli in
<
reg
norm
="
pum
"
type
="
context
">pũ</
reg
>
<
lb
/>
cto
<
var
>.n.</
var
>
vel à diametro in puncto
<
var
>.u.</
var
>
ſemper id quod fit ex
<
var
>.u.b.</
var
>
in
<
var
>.b.n.</
var
>
æquale erit qua-
<
lb
/>
drato inſcriptibili in dicto circulo, hoc autem diuerſimodè cognoſci poteſt, tribus
<
lb
/>
enim modis ego inueni, quorum primus ita ſe habet. </
s
>
<
s
xml:id
="
echoid-s3179
"
xml:space
="
preserve
">Nam ſi punctus
<
var
>.u.</
var
>
fuerit ex-
<
lb
/>
tra circulum, ducantur
<
var
>.b.e.</
var
>
et
<
var
>.e.n.</
var
>
& habebimus duos triangulos
<
var
>.b.n.e.</
var
>
et
<
var
>.b.e.u.</
var
>
ſimi
<
lb
/>
les inuicem, eo, quod angulus
<
var
>.b.</
var
>
communis ambobus exiſtit, & angulus
<
var
>.b.n.e.</
var
>
æqua
<
lb
/>
lis eſt angulo
<
var
>.b.e.u.</
var
>
quod ita probatur, nam angulus
<
var
>.b.n.e.</
var
>
cum angulo
<
var
>.b.a.e.</
var
>
(ducta
<
lb
/>
cum fuerit
<
var
>.b.a.</
var
>
) æquatur duobus rectis ex .21. tertij, ſed ex quinta primi angulus
<
var
>.b.
<
lb
/>
e.a.</
var
>
ęqualis eſt angulo
<
var
>.b.a.e</
var
>
: </
s
>
<
s
xml:id
="
echoid-s3180
"
xml:space
="
preserve
">quare angulus
<
var
>.b.n.e.</
var
>
cum angulo
<
var
>.b.e.a.</
var
>
ęquatur duobus
<
lb
/>
rectis, ſed ex .13. eiuſdem angulus
<
var
>.b.n.e.</
var
>
cum angulo etiam
<
var
>.e.n.u.</
var
>
æquatur duobus re
<
lb
/>
ctis, ergo angulus
<
var
>.e.n.u.</
var
>
æquatur angulo
<
var
>.b.e.a</
var
>
. </
s
>
<
s
xml:id
="
echoid-s3181
"
xml:space
="
preserve
">quare angulus
<
var
>.b.n.e.</
var
>
æquatur
<
reg
norm
="
etiam
"
type
="
context
">etiã</
reg
>
an-
<
lb
/>
gulo
<
var
>.b.e.u.</
var
>
vnde ex .32. eiuſdem reliquus angulus
<
var
>.b.u.e.</
var
>
æqualis erit reliquo angulo
<
lb
/>
<
var
>b.e.n.</
var
>
latera igitur erunt proportionalia ex .4. ſexti, vnde ita ſe habebit
<
var
>.u.b.</
var
>
ad
<
var
>.b.
<
lb
/>
e.</
var
>
vt
<
var
>.b.e.</
var
>
ad
<
var
>.b.n.</
var
>
ex .16. ſexti igitur
<
reg
norm
="
verum
"
type
="
context
">verũ</
reg
>
erit propoſitum.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3182
"
xml:space
="
preserve
">Sed ſi punctus
<
var
>.u.</
var
>
intra circulum fuerit, triangulus
<
var
>.b.e.n.</
var
>
ſimilis erit triangulo
<
var
>.b.u.
<
lb
/>
e.</
var
>
nam angulus
<
var
>.b.</
var
>
ambobus communis erit. </
s
>
<
s
xml:id
="
echoid-s3183
"
xml:space
="
preserve
">Angulus vero
<
var
>.b.n.e.</
var
>
ęqualis eſt angulo
<
var
>.
<
lb
/>
b.e.u.</
var
>
ex .26. tertij, </
s
>
<
s
xml:id
="
echoid-s3184
"
xml:space
="
preserve
">quare ex .32. primi reliquus angulus
<
var
>.b.e.n.</
var
>
æqualis erit reliquo </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>