Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(265)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div518
"
type
="
section
"
level
="
3
"
n
="
8
">
<
div
xml:id
="
echoid-div521
"
type
="
letter
"
level
="
4
"
n
="
2
">
<
pb
o
="
265
"
rhead
="
EPISTOLAE.
"
n
="
277
"
file
="
0277
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0277
"/>
</
div
>
<
div
xml:id
="
echoid-div524
"
type
="
letter
"
level
="
4
"
n
="
3
">
<
head
xml:id
="
echoid-head396
"
style
="
it
"
xml:space
="
preserve
">De inuentione axis propoſite portionis datæ ſphæræ.</
head
>
<
head
xml:id
="
echoid-head397
"
xml:space
="
preserve
">AD EVNDEM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3308
"
xml:space
="
preserve
">VTaxem propoſitæ alicuius datæ ſphæræ inuenire poſſis ita tibi operandum eſt
<
lb
/>
vt gratia exempli. </
s
>
<
s
xml:id
="
echoid-s3309
"
xml:space
="
preserve
">Propoſita nobis eſt ſphæra
<
var
>.c.i.e.t.</
var
>
diametri cognitæ. </
s
>
<
s
xml:id
="
echoid-s3310
"
xml:space
="
preserve
">pro
<
lb
/>
poſita etiam eſt nobis eius portio
<
var
>.n.e.u.</
var
>
axis
<
var
>.e.a.</
var
>
cognitæ minoris ſemidiametro, da-
<
lb
/>
ta etiam nobis eſt proportio alterius portionis minoris hemiſphærio
<
var
>.i.e.t.</
var
>
ad por-
<
lb
/>
tionem
<
var
>.n.e.u.</
var
>
quæritur nunc quantus ſit axis
<
var
>.e.x.</
var
>
ſecundæ portionis hoc eſt deſidera-
<
lb
/>
mus cognoſcere proportionem
<
var
>.e.x.</
var
>
ad
<
var
>.e.a.</
var
>
vel ad diametrum ipſius ſpheræ.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3311
"
xml:space
="
preserve
">Cuius gratia reperiatur primò proportio
<
reg
norm
="
circunferentiæ
"
type
="
context
">circũferentiæ</
reg
>
maioris circuli ipſius
<
reg
norm
="
ſphae ræ
"
type
="
simple
">ſphę
<
lb
/>
ræ</
reg
>
adeius diametrum, quæ ferè eſt vt .22. ad .7. ex Archimede.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3312
"
xml:space
="
preserve
">Quo facto, inueniatur quantitas ſuperficialis huiuſmodi maioris circuli, quæ ſem-
<
lb
/>
per æqualis eſt producto quod fit ex ſemidiametro in dimidium circunferentiæ ip-
<
lb
/>
fius circuli, ex eodem Archimede. </
s
>
<
s
xml:id
="
echoid-s3313
"
xml:space
="
preserve
">Et ſic cognoſcemus quartam partem ſuperficiei
<
lb
/>
ſphæricæ ſphærę propoſite ex .31. primi lib. de ſphæra, & cyllindro Archimedis.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3314
"
xml:space
="
preserve
">Deinde ſumatur tertia pars producti, quod fit ex ſemidiametro in ſuperficiem
<
lb
/>
maioris circuli, & habebimus conum, cuius baſis erit circulus maior, altitudo verò
<
lb
/>
ſemidiameter propoſitæ ſphæræ ex .9. duodecimi Eucli.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3315
"
xml:space
="
preserve
">Quadruplum poſtea huiuſmodi coni, erit quantitas ſoliditatis, ſeu corporeitas to
<
lb
/>
tius ſphærę ex .32. dicti lib. Archimedis.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3316
"
xml:space
="
preserve
">Imaginemur poſtea
<
reg
norm
="
in
"
type
="
wordlist
">ĩ</
reg
>
ſphærica portione
<
var
>.n.e.u.</
var
>
<
reg
norm
="
lineam
"
type
="
context
">lineã</
reg
>
<
var
>.e.u.</
var
>
à
<
reg
norm
="
summitate
"
type
="
context
">sũmitate</
reg
>
ad
<
reg
norm
="
extremitatem
"
type
="
context
">extremitatẽ</
reg
>
<
lb
/>
baſis, cuius
<
var
>.e.u.</
var
>
quantitatem cognoſcemus, hoc modo ſcilicet, fumendo
<
reg
norm
="
radicem
"
type
="
context
">radicẽ</
reg
>
qua-
<
lb
/>
dratam producti
<
var
>.c.e.</
var
>
in
<
var
>.e.a.</
var
>
eo quod
<
lb
/>
quadratum
<
var
>.e.u.</
var
>
æquale eſt quadrato
<
lb
/>
<
figure
xlink:label
="
fig-0277-01
"
xlink:href
="
fig-0277-01a
"
number
="
308
">
<
image
file
="
0277-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0277-01
"/>
</
figure
>
<
var
>a.u.</
var
>
& quadrato
<
var
>.a.e.</
var
>
ex penultima
<
lb
/>
primi Eucli. </
s
>
<
s
xml:id
="
echoid-s3317
"
xml:space
="
preserve
">hoc eſt producto quod
<
lb
/>
fit ex
<
var
>.c.a.</
var
>
in
<
var
>.a.e.</
var
>
ex .34. tertij
<
reg
norm
="
eiuſdem
"
type
="
context
">eiuſdẽ</
reg
>
,
<
lb
/>
& quadrato
<
var
>.a.e.</
var
>
hoc eſt producto,
<
lb
/>
quod fit ex
<
var
>.c.e.</
var
>
in
<
var
>.e.a.</
var
>
ex .3. ſecundi
<
lb
/>
eiuſdem.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3318
"
xml:space
="
preserve
">Inuenta poſtea
<
var
>.e.u.</
var
>
ponamus eam
<
lb
/>
vnius circuli ſemidiametrum eſſe, cu
<
lb
/>
ius ſuperficialis quantitas etiam inue
<
lb
/>
niatur, vt ſupra dictum eſt, quæ qui
<
lb
/>
<
reg
norm
="
dem
"
type
="
context
">dẽ</
reg
>
æqualis erit ſuperficiei portionis
<
lb
/>
<
var
>n.e.u.</
var
>
ex .40. primi li. </
s
>
<
s
xml:id
="
echoid-s3319
"
xml:space
="
preserve
">Archimedis de
<
lb
/>
ſphæra, & cyllindro.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3320
"
xml:space
="
preserve
">Hæc autem quantitas vltimo
<
reg
norm
="
inuem
"
type
="
context
">inuẽ</
reg
>
<
lb
/>
ta multiplicetur cum tertia parte ſe-
<
lb
/>
midiametri datæ ſphæræ, & habebi-
<
lb
/>
mus ſoliditatem vnius coni æqualis
<
lb
/>
aggregato ſoliditatis portionis
<
var
>.n.e.
<
lb
/>
u.</
var
>
ſimul ſumptę
<
unsure
/>
,
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
ſoliditate vnius co
<
lb
/>
ni, cuius axis ſit
<
var
>.a.o.</
var
>
<
reg
norm
="
reſiduum
"
type
="
context
">reſiduũ</
reg
>
ſemidia-
<
lb
/>
metri noſtræ ſphæræ dempta
<
var
>.a.e.</
var
>
ba </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>