Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(290)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div558
"
type
="
section
"
level
="
3
"
n
="
16
">
<
div
xml:id
="
echoid-div558
"
type
="
letter
"
level
="
4
"
n
="
1
">
<
p
>
<
s
xml:id
="
echoid-s3593
"
xml:space
="
preserve
">
<
pb
o
="
290
"
rhead
="
IO. BAPT. BENED.
"
n
="
302
"
file
="
0302
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0302
"/>
rit tempus .33. minutorum ex h oris .2. min .24. reliquum erit hora .1. min .51. vnde
<
lb
/>
proportio aquæ, quæ in vaſe reperitur, ad eam, quæ totum vas implet, erit vt .111.
<
lb
/>
ad .144. </
s
>
<
s
xml:id
="
echoid-s3594
"
xml:space
="
preserve
">Quare nunc poſſumus rectè dicere ex regula de tribus ſi .111. indigent mi-
<
lb
/>
nuta .33. temporis, ergo .144. indigent min .43. horæ, in quo tempore implebitur to-
<
lb
/>
tum vas omnibus fiſtulis operantibus.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div559
"
type
="
letter
"
level
="
4
"
n
="
2
">
<
head
xml:id
="
echoid-head426
"
style
="
it
"
xml:space
="
preserve
">Aliæ circuli noua paßiones.</
head
>
<
head
xml:id
="
echoid-head427
"
xml:space
="
preserve
">AD EVNDEM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3595
"
xml:space
="
preserve
">VTad aſcendendum ignis, & ad
<
reg
norm
="
deſcendendum
"
type
="
context
">deſcendendũ</
reg
>
quicquid graue natum eſt, ita ad
<
lb
/>
ſpeculandum humanus intellectus. </
s
>
<
s
xml:id
="
echoid-s3596
"
xml:space
="
preserve
">nec quieſcit, dum poteſt, eſt enim ver-
<
lb
/>
ſatile,
<
reg
norm
="
agitandoque
"
type
="
simple
">agitandoq́;</
reg
>
ſeſe cauſis rerum immiſcere, & abditum aliquid rimari,
<
lb
/>
conatur, & eſt in nobis, quaſi Diogenes quidam in Dolio.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3597
"
xml:space
="
preserve
">Tibi igitur mitto quod vltimò inueni, alias ſcilicet nouas circuli paſſiones,
<
lb
/>
quæ ita ſe
<
reg
norm
="
habent
"
type
="
context
">habẽt</
reg
>
. </
s
>
<
s
xml:id
="
echoid-s3598
"
xml:space
="
preserve
">Sit circulus
<
var
>.a.b.c.</
var
>
in quo ſit
<
var
>.a.d.</
var
>
latus quadrati inſcriptibilis in ipſo
<
lb
/>
circulo, ct
<
var
>.b.c.</
var
>
ſit diameter ad rectos cum
<
var
>.a.d.</
var
>
in puncto
<
var
>.e.</
var
>
quod medium erit inter
<
lb
/>
a. et
<
var
>.d.</
var
>
ex .3. tertij Eucli. ſit ſimiliter
<
var
>.a.f.</
var
>
contingens ipſum circulum in puncto
<
var
>.a.</
var
>
quæ
<
lb
/>
protracta ſit vſque ad punctum
<
var
>.f.</
var
>
interſectionis cum diametro protracto, quod ita
<
lb
/>
eueniet cum anguli
<
var
>.a.e.f.</
var
>
et
<
var
>.f.a.e.</
var
>
minores ſint duobus rectis, eo quod angulus
<
var
>.f.a.e.</
var
>
<
lb
/>
acutus ſit, cum
<
var
>.a.d.</
var
>
tranſeat inter centrum et
<
var
>.f</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3599
"
xml:space
="
preserve
">Dico nunc quod productum diametri
<
var
>.b.c.</
var
>
in parte
<
var
>.c.e.</
var
>
ipſius, æqualis erit produ-
<
lb
/>
cto ipſius
<
var
>.c.f.</
var
>
in
<
var
>.a.d</
var
>
. </
s
>
<
s
xml:id
="
echoid-s3600
"
xml:space
="
preserve
">Protrahatur imaginatione
<
var
>.b.a.</
var
>
et
<
var
>.a.c.</
var
>
</
s
>
<
s
xml:id
="
echoid-s3601
"
xml:space
="
preserve
">vnde ex .26. tertij Euclid.
<
lb
/>
habebimus angulum
<
var
>.d.a.c.</
var
>
æqualem angulo
<
var
>.a.b.c</
var
>
. </
s
>
<
s
xml:id
="
echoid-s3602
"
xml:space
="
preserve
">ſed ex .31. eiuſdem angulus
<
var
>.f.a.
<
lb
/>
c.</
var
>
æqualis eſt angulo
<
var
>.b</
var
>
. </
s
>
<
s
xml:id
="
echoid-s3603
"
xml:space
="
preserve
">quare æqualis erit angulo
<
var
>.d.a.c.</
var
>
& ita habebimus per .3. ſexti
<
lb
/>
eandem proportionem
<
var
>.f.c.</
var
>
ad
<
var
>.c.e.</
var
>
quæ
<
var
>.f.a.</
var
>
ad
<
var
>.a.e.</
var
>
ſed
<
var
>.a.f.</
var
>
eſt æqualis ſemidiametro
<
lb
/>
circuli propoſiti, </
s
>
<
s
xml:id
="
echoid-s3604
"
xml:space
="
preserve
">propterea quod ſi producta fuerit à puncto
<
var
>.a.</
var
>
ad centrum
<
var
>.o.</
var
>
ſemi
<
lb
/>
diameter
<
var
>.a.o.</
var
>
hæc cum
<
var
>.o.e.</
var
>
faciet dimidium angulirecti, cum ex ſuppoſito
<
var
>.a.d.</
var
>
la-
<
lb
/>
tus ſit quadrati inſcriptibilis in ipſo circulo. </
s
>
<
s
xml:id
="
echoid-s3605
"
xml:space
="
preserve
">& cum
<
var
>.a.f.</
var
>
rectum ex .17. tertij, vnde an
<
lb
/>
gulus
<
var
>.f.</
var
>
erit ſimiliter medietas recti ex .32. primi, </
s
>
<
s
xml:id
="
echoid-s3606
"
xml:space
="
preserve
">quare ex .6. eiuſdem
<
var
>.a.f.</
var
>
æqualis
<
lb
/>
erit
<
var
>.a.o</
var
>
. </
s
>
<
s
xml:id
="
echoid-s3607
"
xml:space
="
preserve
">Ergo cum proportio
<
var
>.f.c.</
var
>
ad
<
var
>.c.e.</
var
>
ſit. vt
<
var
>.f.a.</
var
>
ad
<
var
>.a.e.</
var
>
erit ſimiliter vt
<
var
>.b.c.</
var
>
ad
<
var
>.a.d.</
var
>
<
lb
/>
hoc eſt ut dupli ad duplum, vnde ex .15. ſexti
<
lb
/>
manifeſtum erit propoſitum, ex quo alia paſ-
<
lb
/>
<
figure
xlink:label
="
fig-0302-01
"
xlink:href
="
fig-0302-01a
"
number
="
324
">
<
image
file
="
0302-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0302-01
"/>
</
figure
>
ſio oritur, hoc eſt, quod productum
<
var
>.f.c.</
var
>
in
<
var
>.a.
<
lb
/>
d.</
var
>
æ quale ſit qua drato ipſius
<
var
>.a.c.</
var
>
ratio eſt, quia
<
lb
/>
quadratum
<
var
>.a.c.</
var
>
æ quale eſt producto
<
var
>.b.c.</
var
>
in
<
var
>.c.
<
lb
/>
e.</
var
>
eo quod
<
var
>.a.c.</
var
>
media proportionalis eſt inter
<
var
>.
<
lb
/>
b.c.</
var
>
et
<
var
>.c.e.</
var
>
ex ſimilitudine triangulorum
<
var
>.a.b.c.</
var
>
<
lb
/>
et
<
var
>.e.a.c.</
var
>
nam anguli
<
var
>.b.a.c.</
var
>
et
<
var
>.a.e.c.</
var
>
recti ſunt
<
lb
/>
et
<
var
>.c.</
var
>
<
reg
norm
="
communis
"
type
="
context
">cõmunis</
reg
>
, vnde
<
var
>.b.</
var
>
erit æqualis
<
var
>.e.a.c.</
var
>
ex .32
<
lb
/>
primi, ſequitur etiam, quod
<
var
>.a.c.</
var
>
ſit media pro
<
lb
/>
portionalis inter
<
var
>.a.d.</
var
>
et
<
var
>.f.c.</
var
>
& hæc etiam erit
<
lb
/>
alia circuli paſſio, & quia
<
var
>.a.c.</
var
>
eſt latus octago-
<
lb
/>
ni igitur tale latus
<
reg
norm
="
medium
"
type
="
context
">mediũ</
reg
>
proportionale erit
<
lb
/>
inter latus quadrati. et
<
var
>.f.c.</
var
>
<
reg
norm
="
eiuſdem
"
type
="
context
">eiuſdẽ</
reg
>
circuli, quę
<
lb
/>
quidem
<
var
>.f.c.</
var
>
eſt una portio diametri quadrati circunſcriptibilis ipſum circulum inter
<
lb
/>
circulum & angulum ipſius quadrati.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>