Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(302)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div584
"
type
="
section
"
level
="
3
"
n
="
20
">
<
div
xml:id
="
echoid-div584
"
type
="
letter
"
level
="
4
"
n
="
1
">
<
pb
o
="
302
"
rhead
="
IO. BABPT. BENED.
"
n
="
314
"
file
="
0314
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0314
"/>
</
div
>
</
div
>
<
div
xml:id
="
echoid-div586
"
type
="
section
"
level
="
3
"
n
="
21
">
<
div
xml:id
="
echoid-div586
"
type
="
letter
"
level
="
4
"
n
="
1
">
<
head
xml:id
="
echoid-head450
"
xml:space
="
preserve
">ELIPSIM PROPOSITAM QVALITER</
head
>
<
head
xml:id
="
echoid-head451
"
xml:space
="
preserve
">quadrare valeamus.</
head
>
<
head
xml:id
="
echoid-head452
"
style
="
it
"
xml:space
="
preserve
">Illuſtri Uiro Franciſco Mendo Zzæ</
head
>
<
p
>
<
s
xml:id
="
echoid-s3730
"
xml:space
="
preserve
">QVod antea tuo nomine fecerat Marcus Antonius amicus noſter ſufficie-
<
lb
/>
bat. </
s
>
<
s
xml:id
="
echoid-s3731
"
xml:space
="
preserve
">Sed quia, quæ nunc à me petis, talia ſunt, vt ſine tripartita
<
reg
norm
="
aequa- liter
"
type
="
simple
">ęqua-
<
lb
/>
liter</
reg
>
aliqua data proportione non poſſit aliquis exactè intentum perfice-
<
lb
/>
re, nihilominus, ſuppoſita di
<
lb
/>
<
figure
xlink:label
="
fig-0314-01
"
xlink:href
="
fig-0314-01a
"
number
="
335
">
<
image
file
="
0314-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0314-01
"/>
</
figure
>
cta diuiſione, reliqua facilia
<
reg
norm
="
erunt
"
type
="
context
">erũt</
reg
>
. </
s
>
<
s
xml:id
="
echoid-s3732
"
xml:space
="
preserve
">
<
reg
norm
="
Primum
"
type
="
context
">Primũ</
reg
>
<
lb
/>
enim eſt. </
s
>
<
s
xml:id
="
echoid-s3733
"
xml:space
="
preserve
">Propoſitam Ellipſim qua-
<
lb
/>
drare.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3734
"
xml:space
="
preserve
">Sit
<
reg
norm
="
igitur
"
type
="
simple
">igit̃</
reg
>
Ellipſis propoſita
<
var
>.a.b.d.c.</
var
>
cu-
<
lb
/>
ius axes ſint
<
var
>.a.b.</
var
>
et
<
var
>.d.c.</
var
>
dati, ſeu
<
reg
norm
="
reperti
"
type
="
simple
">reꝑti</
reg
>
ex
<
lb
/>
47.
<
reg
norm
="
ſecundi
"
type
="
context
">ſecũdi</
reg
>
Pergei,
<
reg
norm
="
ſintque
"
type
="
simple
">ſintq́;</
reg
>
duo circuli
<
var
>.a.e.
<
lb
/>
b.f.</
var
>
et
<
var
>.g.d.h.c.</
var
>
circa eaſdem diametros,
<
lb
/>
<
reg
norm
="
tunc
"
type
="
context
">tũc</
reg
>
proportio
<
var
>.a.b.</
var
>
ad
<
var
>.d.c.</
var
>
<
reg
norm
="
dimidium
"
type
="
context
">dimidiũ</
reg
>
erit
<
lb
/>
proportionis circulorum ex .2. 12. Eu-
<
lb
/>
clid. </
s
>
<
s
xml:id
="
echoid-s3735
"
xml:space
="
preserve
">ſed proportio
<
var
>.a.b.</
var
>
ad
<
var
>.d.c.</
var
>
æqualis
<
lb
/>
eſt proportioni maioris circuli ad Elli
<
lb
/>
pſim .ex .5. Archimedis in lib. de cono
<
lb
/>
idalibus, quapropter proportio Elli-
<
lb
/>
pſis ad minorem circulum altera me-
<
lb
/>
dietas erit totius proportionis circulo-
<
lb
/>
rum, hoc eſt maioris ad minorem, qua
<
lb
/>
re Ellipſis media proportionalis erit
<
lb
/>
inter eos circulos. </
s
>
<
s
xml:id
="
echoid-s3736
"
xml:space
="
preserve
">Nunc verò cum
<
lb
/>
ex Archimede repertę fuerint duæ fi-
<
lb
/>
guræ rectilineæ æquales duobus circu
<
lb
/>
lis iam dictis, & inter has, reperta fue
<
lb
/>
rit alia media proportionalis propoſi-
<
lb
/>
tum obtinebimus.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div588
"
type
="
letter
"
level
="
4
"
n
="
2
">
<
head
xml:id
="
echoid-head453
"
style
="
it
"
xml:space
="
preserve
">Spheroidem propoſitam cubare.</
head
>
<
head
xml:id
="
echoid-head454
"
xml:space
="
preserve
">AD EVNDEM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3737
"
xml:space
="
preserve
">PRopoſita ſphæroides erit, aut prolata, aut oblonga, ſit prius prolata,
<
reg
norm
="
ſitque
"
type
="
simple
">ſitq́;</
reg
>
<
var
>.a.b.</
var
>
<
lb
/>
diameter circuli, qui eam per æqualia ſecat, circa quam
<
var
>.a.b.</
var
>
vt circa axem in-
<
lb
/>
telligatur ſphæroides oblonga, cuius ſpiſſitudo ſit
<
var
>.d.c.</
var
>
axis prolatæ, cogitemus
<
reg
norm
="
nunc
"
type
="
context
">nũc</
reg
>
<
lb
/>
duas ſphæras
<
var
>.a.e.b.f.</
var
>
et
<
var
>.g.d.h.c.</
var
>
circa dictos axes. </
s
>
<
s
xml:id
="
echoid-s3738
"
xml:space
="
preserve
">Vnde quatuor corpora habebi-
<
lb
/>
mus, hoc eſt duas ſphæras, & duas ſphæroides, quas probabo continuas proportio-
<
lb
/>
nales inuicem eſſe.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3739
"
xml:space
="
preserve
">Conſideremus igitur duos conos rectos, quorum
<
var
>.a.b.</
var
>
diameter ſit eorum baſium,
<
lb
/>
altitudo autem maioris, æqualis ſit ſemidiametro majori, hoc eſt medietati
<
var
>.a.b.</
var
>
al- </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>