Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(344)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div642
"
type
="
section
"
level
="
3
"
n
="
28
">
<
div
xml:id
="
echoid-div662
"
type
="
letter
"
level
="
4
"
n
="
7
">
<
p
>
<
s
xml:id
="
echoid-s4168
"
xml:space
="
preserve
">
<
pb
o
="
344
"
rhead
="
IO. BAPT. BENED.
"
n
="
356
"
file
="
0356
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0356
"/>
refleyus ſecabit cathetum
<
var
>.b.o.</
var
>
in puncto
<
var
>.c.</
var
>
intra ſpeculum, nec dubitandum eſt quin
<
lb
/>
linea
<
var
>.e.b.</
var
>
ſectura ſit
<
var
>.b.o.</
var
>
eo quod cum angulus
<
var
>.o.e.c.</
var
>
ſit maior angulo
<
var
>.e.o.c.</
var
>
ex .19.
<
lb
/>
primi, & ſimiliter angulus
<
var
>.b.e.f.</
var
>
ſequitur ex .13. dicti, angulos
<
var
>.b.e.o.</
var
>
et
<
var
>.e.o.b.</
var
>
eſſe mi
<
lb
/>
nores duobus rectis, vnde ex penultima petitione primi, duæ lineæ
<
var
>.b.e.</
var
>
et
<
var
>.o.b.</
var
>
<
reg
norm
="
inuicem
"
type
="
context
">inuicẽ</
reg
>
<
lb
/>
concurrent. </
s
>
<
s
xml:id
="
echoid-s4169
"
xml:space
="
preserve
">Quare poſſumus ex hoc, quoddam corollarium extrahere, hoc eſt
<
lb
/>
<
reg
norm
="
neceſſarium
"
type
="
context
">neceſſariũ</
reg
>
<
reg
norm
="
semper
"
type
="
context
">sẽper</
reg
>
exiſtat, vt linea
<
var
>.c.e.</
var
>
minor eſſe linea
<
var
>.c.o</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4170
"
xml:space
="
preserve
">Sed vnde eueniat quod ip
<
lb
/>
ſa neceſſariò debeat ſemper maior eſſe ipſa
<
var
>.c.g.</
var
>
clarum eſt ex .7. tertij Eucli. </
s
>
<
s
xml:id
="
echoid-s4171
"
xml:space
="
preserve
">Nunc
<
lb
/>
imaginemur ductas eſſe duas
<
reg
norm
="
tangentes
"
type
="
context
">tãgentes</
reg
>
<
var
>.b.d.</
var
>
et
<
var
>.b.h.</
var
>
& ab
<
var
>.e.</
var
>
<
reg
norm
="
ipsam
"
type
="
context
">ipsã</
reg
>
<
var
>.e.i.</
var
>
vnde certi erimus,
<
lb
/>
quod ab interuallo inter
<
var
>.h.</
var
>
et
<
var
>.d.</
var
>
punctum
<
var
>.b.</
var
>
<
reg
norm
="
ponſſibile
"
type
="
context
">põſſibile</
reg
>
ſit vt reflectatur. </
s
>
<
s
xml:id
="
echoid-s4172
"
xml:space
="
preserve
">Accipiamus
<
lb
/>
nunc
<
var
>.p.c.</
var
>
minorem medietate ipſius
<
var
>.b.c.</
var
>
& à puncto
<
var
>.p.</
var
>
imaginemur tangentem
<
var
>.p.q.</
var
>
<
lb
/>
in puncto
<
var
>.q.</
var
>
prorractaq́ue ſit
<
var
>.b.q.</
var
>
vt radius incidentiæ, </
s
>
<
s
xml:id
="
echoid-s4173
"
xml:space
="
preserve
">tunc dico, radium reflexum
<
lb
/>
ipſius
<
var
>.b.q.</
var
>
<
reg
norm
="
non
"
type
="
context
">nõ</
reg
>
concurrere in eodem puncto
<
var
>.c.</
var
>
ipſius catheti, ſi vero dixeris
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
ſic. </
s
>
<
s
xml:id
="
echoid-s4174
"
xml:space
="
preserve
">Eſto
<
lb
/>
<
reg
norm
="
igitur
"
type
="
simple
">igit̃</
reg
>
radius dictus
<
var
>.c.q.s</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4175
"
xml:space
="
preserve
">Imaginemur
<
reg
norm
="
tangentem
"
type
="
context context
">tãgentẽ</
reg
>
<
var
>.e.i.</
var
>
in puncto
<
var
>.e.</
var
>
vnde ex .18. quinti Alha
<
lb
/>
zem, vel .12. ſexti Vitellionis proportio
<
var
>.b.i.</
var
>
ad
<
var
>.i.c.</
var
>
erit, vt
<
var
>.b.o.</
var
>
ad
<
var
>.o.c.</
var
>
& ſimiliter erit
<
lb
/>
ipſius
<
var
>.b.p.</
var
>
ad
<
var
>.p.c.</
var
>
vt
<
var
>.b.o.</
var
>
ad
<
var
>.o.c.</
var
>
ex eadem. </
s
>
<
s
xml:id
="
echoid-s4176
"
xml:space
="
preserve
">Quare ex .11. quinti Eucli. proportio ip
<
lb
/>
ſius
<
var
>.b.p.</
var
>
ad
<
var
>.p.c.</
var
>
erit vt ipſius
<
var
>.b.i.</
var
>
ad
<
var
>.i.c.</
var
>
ſed quia
<
var
>.p.b.</
var
>
vt pars ipſius
<
var
>.b.i.</
var
>
minor eſt ip-
<
lb
/>
ſa, ergo ex .14. dicti
<
var
>.p.c.</
var
>
minor erit ipſa
<
var
>.c.i.</
var
>
hoc eſt totum minus ſua parte, quod eſt
<
lb
/>
impoſſibile, </
s
>
<
s
xml:id
="
echoid-s4177
"
xml:space
="
preserve
">quare non in ipſo catheto videbitur imago ipſius obiecti.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4178
"
xml:space
="
preserve
">Aliud notandum etiam cernere potes ex ipſis ſpeculis ſphæricis conuexis, hoc eſt
<
lb
/>
quod poſſibile ſit aliquoties, radium reflexum concurrere cum catheto incidentiæ
<
lb
/>
extra ſpeculum inter puncta
<
var
>.g.</
var
>
et
<
var
>.p.</
var
>
vt exempli gratia .ſi punctus
<
var
>.p.</
var
>
eſſet exactè
<
lb
/>
in medio inter
<
var
>.b.</
var
>
et g. </
s
>
<
s
xml:id
="
echoid-s4179
"
xml:space
="
preserve
">tunc punctum
<
var
>.c.</
var
>
ipſius concurſus cum catheto incidentiæ eſſet
<
lb
/>
inter
<
var
>.g.</
var
>
et
<
var
>.p.</
var
>
eo quod
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
linea
<
var
>.p.q.</
var
>
debeat @iui lere
<
reg
norm
="
angulum
"
type
="
context
">angulũ</
reg
>
<
var
>.b.</
var
>
q, c.
<
reg
norm
="
per
"
type
="
simple
">ꝑ</
reg
>
ęqualia, oportebit
<
lb
/>
c. poſitum eſſe inter
<
var
>.g.</
var
>
et
<
var
>.p.</
var
>
quia angulus
<
var
>.g.q.p.</
var
>
maior eſt angulo
<
var
>.p.q.b.</
var
>
vt per te faci
<
lb
/>
le potes ratiotinari, imaginando cir
<
lb
/>
<
figure
xlink:label
="
fig-0356-01
"
xlink:href
="
fig-0356-01a
"
number
="
388
">
<
image
file
="
0356-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0356-01
"/>
</
figure
>
culum circa
<
reg
norm
="
triangulum
"
type
="
context
">triãgulum</
reg
>
<
var
>.g.q.b.</
var
>
& dia
<
lb
/>
merrum perpendicularem .ad
<
var
>.g.b.</
var
>
<
lb
/>
in puncto
<
var
>.p.</
var
>
producendo poſtea
<
var
>.q.
<
lb
/>
p.</
var
>
<
reg
norm
="
vſque
"
type
="
simple
">vſq;</
reg
>
ad
<
reg
norm
="
alteram
"
type
="
context
">alterã</
reg
>
<
reg
norm
="
partem
"
type
="
context
">partẽ</
reg
>
circunferen-
<
lb
/>
tiæ ipſius circuli. </
s
>
<
s
xml:id
="
echoid-s4180
"
xml:space
="
preserve
">
<
reg
norm
="
argumentando
"
type
="
context context
">argumẽtãdo</
reg
>
dein-
<
lb
/>
de mediante vltima ſexti, illud
<
reg
norm
="
idem
"
type
="
context
">idẽ</
reg
>
<
lb
/>
po@es etiam ſcire ex .22. quinti Alha
<
lb
/>
zeni. & ex .26. ſexti Vitellionis. </
s
>
<
s
xml:id
="
echoid-s4181
"
xml:space
="
preserve
">vn-
<
lb
/>
de ſi ad ambas pupillas venerint ra
<
lb
/>
dij reflexi ipſius obiecti
<
var
>.b.a.</
var
>
duobus
<
lb
/>
punctis huiuſmodi ſpeculi, ita di-
<
lb
/>
ſtantibus à puncto
<
var
>.g.</
var
>
vt
<
var
>.q</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4182
"
xml:space
="
preserve
">tunc com
<
lb
/>
mune punctum concurſus axium vi
<
lb
/>
ſualium erit in catheto inter
<
var
>.g.p.</
var
>
<
lb
/>
vbi apparebit imago ex ſuperius di
<
lb
/>
ctis rationibus, ita vt
<
reg
norm
="
non
"
type
="
context
">nõ</
reg
>
ſolum con
<
lb
/>
cauis, ſed etiam conuexis hoc accidere poſſit.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4183
"
xml:space
="
preserve
">In planis autem
<
reg
norm
="
nunquam
"
type
="
context
">nunquã</
reg
>
hoc poteſt euenire, vt tibi alias dixi, eo quod ſi
<
reg
norm
="
acceperi- mus
"
type
="
conjecture
">accéperi-
<
lb
/>
mus</
reg
>
<
reg
norm
="
rectam
"
type
="
context
">rectã</
reg
>
<
var
>.m.r.</
var
>
pro
<
reg
norm
="
coni
"
type
="
context
">cõi</
reg
>
ſectione
<
reg
norm
="
ſuperficiei
"
type
="
simple
">ſuꝑficiei</
reg
>
<
var
>.l.t.x.</
var
>
reflexionis &
<
reg
norm
="
ſuperficiei
"
type
="
simple
">ſuꝑficiei</
reg
>
ſpeculi,
<
reg
norm
="
punctumque
"
type
="
context context simple
">pũctũq́;</
reg
>
<
lb
/>
lucidum
<
var
>.l.</
var
>
<
reg
norm
="
protractoque
"
type
="
simple
">protractoq́;</
reg
>
catheto
<
var
>.l.r.t.</
var
>
<
reg
norm
="
lineisque
"
type
="
simple
">lineisq́;</
reg
>
incidentiæ
<
var
>.l.x.</
var
>
et
<
var
>.l.m.</
var
>
reflexionis etiam
<
lb
/>
<
var
>x.y.</
var
>
et
<
var
>.m.z.</
var
>
cum anguli
<
var
>.l.x.r.</
var
>
et
<
var
>.y.x.h.</
var
>
et
<
var
>.r.x.t.</
var
>
æquales inuicem ſint, & ſic anguli
<
var
>.l.m.
<
lb
/>
r.</
var
>
et
<
var
>.z.m.h.</
var
>
et
<
var
>.r.m.t.</
var
>
erit
<
var
>.r.t.</
var
>
tam pro triangulo
<
var
>.r.x.t.</
var
>
quam pro triangulo
<
var
>.r.m.t.</
var
>
æqua
<
lb
/>
lis
<
var
>.r.l.</
var
>
ex .26. primi, ita quod ſemper in puncto
<
var
>.t.</
var
>
<
reg
norm
="
conuenient
"
type
="
context
">conueniẽt</
reg
>
omnes radij reflexi ipſius </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>