Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(346)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div642
"
type
="
section
"
level
="
3
"
n
="
28
">
<
div
xml:id
="
echoid-div666
"
type
="
letter
"
level
="
4
"
n
="
8
">
<
p
>
<
s
xml:id
="
echoid-s4189
"
xml:space
="
preserve
">
<
pb
o
="
346
"
rhead
="
IO. BABPT. BENED.
"
n
="
358
"
file
="
0358
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0358
"/>
deſcendat radius
<
var
>.b.d.K.s.f.</
var
>
ad
<
reg
norm
="
libitum
"
type
="
context
">libitũ</
reg
>
hoc eſt rectè vel obliquè, cuius pars
<
var
>.b.d.</
var
>
in ipſo
<
lb
/>
aere exiſtat. </
s
>
<
s
xml:id
="
echoid-s4190
"
xml:space
="
preserve
">Nunc manifeſtum erit partem
<
var
>.b.d.</
var
>
ipſius radij clariorem ſeu minus im
<
lb
/>
<
reg
norm
="
peditam
"
type
="
context
">peditã</
reg
>
eſſe quam
<
var
>.d.K.</
var
>
quod ex eo etiam cognoſcere poſſumus quia
<
var
>.b.d.</
var
>
reflectitur à
<
lb
/>
puncto
<
var
>.d.</
var
>
ſuperficiei corporis a quei, quapropter minus luminoſa remanebit pars
<
var
>.d.
<
lb
/>
K.</
var
>
cum non tota claritas
<
var
>.b.d.</
var
>
deſcendat in corpore aqueo, ſed vna eius pars reflecta-
<
lb
/>
tur, reliqua verò tantummodò deſcendat, </
s
>
<
s
xml:id
="
echoid-s4191
"
xml:space
="
preserve
">deinde pars
<
var
>.K.s.</
var
>
ex neceſſitate debilior
<
lb
/>
erit ipſa
<
var
>.d.K.</
var
>
eo quod ſuccedit poſt ipſam
<
var
>.d.K.</
var
>
propter hoc etiam, quia cum corpus
<
lb
/>
aqueum habeat aliquantulum opacitatis, radius
<
var
>.d.K.</
var
>
ab omni puncto ipſius ſpiſſitu-
<
lb
/>
dinis a quæ continuo reflectitur, quę quidem reflexio eſt illud lumen cęruleum, quod
<
lb
/>
in profunditate ipſius aquę nobis apparet. </
s
>
<
s
xml:id
="
echoid-s4192
"
xml:space
="
preserve
">Cum igitur reflexio ipſa ſemper detra-
<
lb
/>
hat ab ipſo radio luminoſo, reſiduum verò ſit id quod penetrat, ideo
<
var
>.K.s.</
var
>
erit vna
<
lb
/>
pars tantummodò luminis ipſius
<
var
>.d.K</
var
>
: in
<
var
>.s.f.</
var
>
verò aliqua pars luminis ipſius
<
var
>.K.s.</
var
>
& ſic
<
lb
/>
continuò debilitatur radius, ita quod ad nihilum vſque deuenit, & vltra tale cor-
<
lb
/>
pus remanebit vmbra, quaſi ſi ipſum corpus eſſet perfectè opacum, cuius rei cauſa,
<
lb
/>
eſt illa continua reflexio, vt diximus, quæ continuò adimit aliquid ex ipſo radio,
<
lb
/>
nec permittit eum totum tranſire.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4193
"
xml:space
="
preserve
">Quapropter mirandum non eſt eos, qui margaritas quærunt in fundo maris nul-
<
lb
/>
lum ibi videre lumen. </
s
>
<
s
xml:id
="
echoid-s4194
"
xml:space
="
preserve
">Nihilominus vmbra maris, quam dico nos poſſe videre in
<
lb
/>
ſuperficie corporis lunaris, ab alia etiam ratione prouenire poſſet. </
s
>
<
s
xml:id
="
echoid-s4195
"
xml:space
="
preserve
">Imaginemur enim
<
lb
/>
aggregatum terrę,
<
reg
norm
="
marisque
"
type
="
simple
">marisq́;</
reg
>
eſſe tantummodò aqueum, quod quidem eſſet perfectè
<
lb
/>
ſphæricum ratione centri grauitatis,
<
reg
norm
="
ſupponamusque
"
type
="
simple
">ſupponamusq́;</
reg
>
<
reg
norm
="
ipsum
"
type
="
context
">ipsũ</
reg
>
eſſe valde diaphanum, ita
<
lb
/>
quod radij ſolares ipſum penetraſſent. </
s
>
<
s
xml:id
="
echoid-s4196
"
xml:space
="
preserve
">Tunc dico quod in ſuperficie corporis luna-
<
lb
/>
ris produceret vmbram. </
s
>
<
s
xml:id
="
echoid-s4197
"
xml:space
="
preserve
">Pro cuius intelligentia cogitemus ſubſcriptam hic figuram
<
lb
/>
<
var
>b.h.q.a.e.</
var
>
eſſe ſphęram aliquam cryſtallinam, & ad partem
<
var
>.b.h.q.</
var
>
ſit radius lumino-
<
lb
/>
ſus ſolaris qui ipſam illuminet, cuius radij extremitates ſint
<
var
>.d.b.l.</
var
>
et
<
var
>.p.q.r.</
var
>
ſupponen-
<
lb
/>
do
<
var
>.d.l.</
var
>
et
<
var
>.p.r.</
var
>
terminos eſſe vnius plani ſecantis ipſum radium per axem, </
s
>
<
s
xml:id
="
echoid-s4198
"
xml:space
="
preserve
">tunc vide-
<
lb
/>
bis ipſum radium
<
var
>.b.p.q.d.</
var
>
<
reg
norm
="
tranſeun- tem
"
type
="
context
">tranſeũ-
<
lb
/>
<
figure
xlink:label
="
fig-0358-01
"
xlink:href
="
fig-0358-01a
"
number
="
392
">
<
image
file
="
0358-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0358-01
"/>
</
figure
>
tem</
reg
>
ipſam ſphæram, congregari ſeu
<
lb
/>
<
reg
norm
="
condenſari
"
type
="
context
">condẽſari</
reg
>
, ob vniformem refractio-
<
lb
/>
nem, vſque ad punctum
<
var
>.o.</
var
>
deinde;
<
lb
/>
propter rectitudinem ipſius diffu-
<
lb
/>
ſionis, vltra punctum
<
var
>.o.</
var
>
ipſum dila-
<
lb
/>
tari, diſgregari, ſeu rarefieri,
<
reg
norm
="
quouſque
"
type
="
simple
">quouſq;</
reg
>
<
lb
/>
nullius illuminationis actum habeat .
<
lb
/>
vt: exempli gratia
<
var
>.o.t.</
var
>
et
<
var
>.o.s.</
var
>
eius par
<
lb
/>
tes, ita quod interualla
<
var
>.c.o.b.</
var
>
et
<
var
>.u.</
var
>
<
lb
/>
<
figure
xlink:label
="
fig-0358-02
"
xlink:href
="
fig-0358-02a
"
number
="
393
">
<
image
file
="
0358-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0358-02
"/>
</
figure
>
<
var
>o.q.</
var
>
relinquerentur priuata lumini-
<
lb
/>
bus, vnde vmbroſa remanerent. di-
<
lb
/>
<
reg
norm
="
ſtantiaque
"
type
="
simple
">ſtantiaq́;</
reg
>
ab
<
var
>.o.</
var
>
ad ſuperficiem ſphęri
<
lb
/>
cam corporis
<
var
>.b.e.d.q.</
var
>
non ſolum
<
reg
norm
="
non
"
type
="
context
">nõ</
reg
>
<
lb
/>
maior eſt diametro ipſius ſphæræ;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4199
"
xml:space
="
preserve
">imo minor, vt à te ipſo experiri po-
<
lb
/>
tes. </
s
>
<
s
xml:id
="
echoid-s4200
"
xml:space
="
preserve
">Poſito igitur aliquo obiecto
<
lb
/>
opaco in loco
<
var
>.K.o.g.</
var
>
eius ſuperficies
<
lb
/>
intercepta inter
<
var
>.K.</
var
>
et
<
var
>.g.</
var
>
adumbrata
<
lb
/>
erit, excepto puncto
<
var
>.o</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4201
"
xml:space
="
preserve
">Poſito dein
<
lb
/>
de ipſo obiecto in loco
<
var
>.n.y.x.m.</
var
>
<
reg
norm
="
eius
"
type
="
simple
">eiꝰ</
reg
>
<
lb
/>
partes
<
var
>.y.n.</
var
>
et
<
var
>.x.m.</
var
>
remanebunt lu- </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>