Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(358)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div690
"
type
="
section
"
level
="
3
"
n
="
32
">
<
div
xml:id
="
echoid-div690
"
type
="
letter
"
level
="
4
"
n
="
1
">
<
p
>
<
s
xml:id
="
echoid-s4293
"
xml:space
="
preserve
">
<
pb
o
="
358
"
rhead
="
IO. BAPT. BENED.
"
n
="
370
"
file
="
0370
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0370
"/>
ſecunda definitione eiuſdem libr
<
var
>.a.m.l.</
var
>
efficiet angulos rectos cum duabus
<
var
>.b.c.</
var
>
et
<
var
>.K.
<
lb
/>
i.</
var
>
in punctis
<
var
>.m.</
var
>
et
<
var
>.l.</
var
>
et
<
var
>.k.i.</
var
>
parallela erit ipſi
<
var
>.b.c.</
var
>
ex .28. primi, quod etiam poteſt con
<
lb
/>
cludi mediante .16. vndecimi, cum
<
var
>.k.i.</
var
>
et
<
var
>.b.c.</
var
>
ſint communes ſectiones duorum pla
<
lb
/>
norum cum triangulari. </
s
>
<
s
xml:id
="
echoid-s4294
"
xml:space
="
preserve
">Deinde ex .29. primi anguli
<
var
>.a.i.m.</
var
>
et
<
var
>.a.c.l.</
var
>
erunt inuicem
<
lb
/>
æquales, idem etiam dico de angulis
<
var
>.a.k.i.</
var
>
et
<
var
>.a.b.c.</
var
>
anguli poſtea ad
<
var
>.a.</
var
>
communes
<
lb
/>
ſunt triangulis
<
var
>.l.a.c.</
var
>
et
<
var
>.m.a.i.</
var
>
vt triangulis
<
var
>.l.a.b.</
var
>
et
<
var
>.m.a.k</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4295
"
xml:space
="
preserve
">Vnde ex .4. ſexti, eadem
<
lb
/>
proportio erit ipſius
<
var
>.m.i.</
var
>
ad
<
var
>.l.c.</
var
>
& ipſius
<
var
>.m.k.</
var
>
ad
<
var
>.l.b.</
var
>
vt ipſius
<
var
>.a.m.</
var
>
ad
<
var
>.a.l</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4296
"
xml:space
="
preserve
">Quare ex
<
lb
/>
vndecima quinti, ita erit ipſius
<
var
>.m.k.</
var
>
ad
<
var
>.l.b.</
var
>
vt ipſius
<
var
>.m.i.</
var
>
ad
<
var
>.l.c.</
var
>
& ex .13. eiuſdem, ita
<
lb
/>
erit ipſius
<
var
>.k.i.</
var
>
ad
<
var
>.b.c.</
var
>
vt
<
var
>.m.i.</
var
>
ad
<
var
>.l.c.</
var
>
ſed ipſius
<
var
>.m.i.</
var
>
ad
<
var
>.l.c.</
var
>
eſt vt ipſius
<
var
>.a.m.</
var
>
ad
<
var
>.a.l.</
var
>
quod
<
lb
/>
iam dictum eſt, vnde ex .11. dicta, ita erit ipſius
<
var
>.k.i.</
var
>
ad
<
var
>.b.c.</
var
>
vt ipſius
<
var
>.a.m.</
var
>
ad
<
var
>.a.l.</
var
>
& ex
<
lb
/>
16. dicti ita erit ipſius
<
var
>.a.m.</
var
>
ad
<
var
>.k.i.</
var
>
vt ipſius
<
var
>.a.l.</
var
>
ad
<
var
>.b.c</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4297
"
xml:space
="
preserve
">Quare ex definitione ab Eu-
<
lb
/>
cli. poſita in .11, lib. pars coni ſuperior ſimilis erit cono totali.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4298
"
xml:space
="
preserve
">Deinde ſciendum eſt illud quod Euclid. ſcribit in .10. duodecimi lib. hoc eſt,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
<
lb
/>
proportio duarum pyramidum inuicem
<
lb
/>
ſimilium, triplicata eſt ei diametrorum
<
lb
/>
<
figure
xlink:label
="
fig-0370-01
"
xlink:href
="
fig-0370-01a
"
number
="
409
">
<
image
file
="
0370-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0370-01
"/>
</
figure
>
ſuarum baſium, hoc eſt, quod proportio
<
var
>.
<
lb
/>
b.c.</
var
>
ad
<
var
>.k.i.</
var
>
tertia pars erit proportionis to
<
lb
/>
tius pyramidis
<
var
>.a.b.c.</
var
>
partiali pyramidi
<
var
>.a.
<
lb
/>
k.i.</
var
>
ſed ita eſt ipſius
<
var
>.a.c.</
var
>
ad
<
var
>.a.i.</
var
>
vt ipſius
<
var
>.b.
<
lb
/>
c.</
var
>
ad
<
var
>.k.i.</
var
>
ex .4. ſexti cum trianguli
<
var
>.a.b.c.</
var
>
<
lb
/>
et
<
var
>.a.k.i.</
var
>
ſint æquianguli, quod ex ijs, quę
<
lb
/>
ſuperius diximus facile compręhenditur.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4299
"
xml:space
="
preserve
">Quare
<
reg
norm
="
proportio
"
type
="
simple
">ꝓportio</
reg
>
<
var
>.a.c.</
var
>
ad
<
var
>.a.i.</
var
>
tertia pars erit
<
lb
/>
proportionis totius coni
<
var
>.a.b.c.</
var
>
ad eius par
<
lb
/>
tem abſciſſam
<
var
>.a.k.i.</
var
>
ſed eadem proportio
<
lb
/>
ipſius
<
var
>.a.c.</
var
>
ad
<
var
>.a.i.</
var
>
erat etiam tertia pars pro
<
lb
/>
portionis ipſius
<
var
>.a.c.</
var
>
ad
<
var
>.a.d</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4300
"
xml:space
="
preserve
">Quare ex com
<
lb
/>
muni conceptu, proportio totius pyramidis, ad partem abſciſſam, æqualis erit pro-
<
lb
/>
portioni ipſius
<
var
>.a.c.</
var
>
ad
<
var
>.a.d</
var
>
.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div693
"
type
="
letter
"
level
="
4
"
n
="
2
">
<
head
xml:id
="
echoid-head526
"
style
="
it
"
xml:space
="
preserve
">De differentia caloris Solis propter vaporum
<
unsure
/>
<
lb
/>
altitudinem.</
head
>
<
head
xml:id
="
echoid-head527
"
xml:space
="
preserve
">AD EVNDEM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4301
"
xml:space
="
preserve
">NOlo, mihi credas, ſed ex rationibus, quas tibi ſcribo conſidera, quod quo
<
lb
/>
<
reg
norm
="
tieſcunque
"
type
="
simple
">tieſcunq;</
reg
>
craſſities vel
<
reg
norm
="
denſitas
"
type
="
context
">dẽſitas</
reg
>
<
reg
norm
="
vaporum
"
type
="
context
">vaporũ</
reg
>
, ſeu altitudo, maior eſſet ea, quę nunc re-
<
lb
/>
peritur, </
s
>
<
s
xml:id
="
echoid-s4302
"
xml:space
="
preserve
">tunc minor differentia eſſet inter maiorem
<
reg
norm
="
minoremque
"
type
="
simple
">minoremq́;</
reg
>
calorem Solis, quam
<
lb
/>
nunc ſentiamus. </
s
>
<
s
xml:id
="
echoid-s4303
"
xml:space
="
preserve
">Pro cuius rei euidentia, imaginemur in hac ſubſcripta figura, li-
<
lb
/>
neam
<
var
>.o.a.</
var
>
pro ſemidiametro terræ, et
<
var
>.a.c.</
var
>
pro craſſitie vaporum, vt nunc ſe
<
lb
/>
habet, et
<
var
>.a.d.</
var
>
pro maiori craſſitie, imaginemurq́ue lineam
<
var
>.a.b.</
var
>
quaſi perpen-
<
lb
/>
dicularem ad
<
var
>.o.a.</
var
>
quæ abſciſſa ſit in puncto u. à circunferentia
<
var
>.c.u.</
var
>
inferiori prio-
<
lb
/>
rum vaporum.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4304
"
xml:space
="
preserve
">Tunc dico minorem eſſe proportionem ipſius
<
var
>.a.b.</
var
>
ad
<
var
>.a.d.</
var
>
quam ipſius
<
var
>.a.u.</
var
>
ad
<
var
>.a.
<
lb
/>
c.</
var
>
cogitemus ergo protractas eſſe lineas
<
var
>.o.b</
var
>
:
<
var
>d.b</
var
>
:
<
var
>c.u.</
var
>
et
<
var
>.c.n.</
var
>
quæ
<
var
>.c.n.</
var
>
ſecabit
<
var
>.a.u.</
var
>
in </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>