Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(362)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div703
"
type
="
section
"
level
="
3
"
n
="
35
">
<
div
xml:id
="
echoid-div703
"
type
="
letter
"
level
="
4
"
n
="
1
">
<
p
>
<
s
xml:id
="
echoid-s4331
"
xml:space
="
preserve
">
<
pb
o
="
362
"
rhead
="
IO. BAPT. BENED.
"
n
="
374
"
file
="
0374
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0374
"/>
modifunis cum libramento triangulum ſcalenum conſtitueret.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4332
"
xml:space
="
preserve
">Exempli gratia, ponamus lineam
<
var
>.d.b.c.</
var
>
eſſe libramentum .et
<
var
>.b.e.u.</
var
>
eius pedem,
<
lb
/>
funem autem, qui aliquando cum libramento facit triangulum iſocellum, & aliquan
<
lb
/>
do ſcalenum, eſſe
<
var
>.d.e.c.</
var
>
eſto etiam quod in figura
<
var
>.A.</
var
>
dictus triangulus
<
var
>.d.e.c.</
var
>
ſit iſo-
<
lb
/>
cellus, & in figura
<
var
>.B.</
var
>
ſcalenus. </
s
>
<
s
xml:id
="
echoid-s4333
"
xml:space
="
preserve
">Tunc quæſiui à te an ſcires rationem, quare
<
lb
/>
funis
<
var
>.d.e.c.</
var
>
in figura
<
var
>.A.</
var
>
eſſet diſtenſus, & in figura
<
var
>.B.</
var
>
laxus quemadmodum vide-
<
lb
/>
bamus. </
s
>
<
s
xml:id
="
echoid-s4334
"
xml:space
="
preserve
">cum mihireſponderis, neſcio quid, quod nunc memoria
<
reg
norm
="
non
"
type
="
context
">nõ</
reg
>
teneo, ſed quia
<
lb
/>
pollicitus ſum metibi eam afferre, propterea nunc ad te mitto. </
s
>
<
s
xml:id
="
echoid-s4335
"
xml:space
="
preserve
">Scias ergo huiuſ-
<
lb
/>
modirationem nihil aliud eſſe niſi quod in figura
<
var
>.A.</
var
>
duæ lineæ
<
var
>.c.e.</
var
>
et
<
var
>.d.e.</
var
>
ſimul è
<
lb
/>
directo iunctæ longiores ſint illis, quę reperiuntur in figura
<
var
>.B.</
var
>
ſed quia funis tam in
<
lb
/>
figura
<
var
>.B.</
var
>
quam in figura
<
var
>.A.</
var
>
vnus, & idem eſt, ideo in figura
<
var
>.B.</
var
>
laxatus eſt, & non in
<
lb
/>
tenſus, ut in figura
<
var
>.A</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4336
"
xml:space
="
preserve
">Sed vt huiuſmodi veritatis certam notitiam habeas, infraſcri
<
lb
/>
ptum circulum mente concipe
<
var
>.f.e.i.</
var
>
cuius ſemidiameter, æqualis ſit
<
var
>.b.e.</
var
>
& diame-
<
lb
/>
ter ſit
<
var
>.f.i.</
var
>
in quo imaginare eſſe tuum
<
lb
/>
libramentum
<
var
>.d.b.c.</
var
>
& figuras
<
var
>.A.</
var
>
et
<
var
>.B.</
var
>
<
lb
/>
<
figure
xlink:label
="
fig-0374-01
"
xlink:href
="
fig-0374-01a
"
number
="
413
">
<
image
file
="
0374-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0374-01
"/>
</
figure
>
<
figure
xlink:label
="
fig-0374-02
"
xlink:href
="
fig-0374-02a
"
number
="
414
">
<
image
file
="
0374-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0374-02
"/>
</
figure
>
& pr obabo lineas
<
var
>.d.e.c.</
var
>
figurę
<
var
>.A.</
var
>
lon
<
lb
/>
giores eſſe lineis
<
var
>.d.e.c.</
var
>
figuræ
<
var
>.B</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4337
"
xml:space
="
preserve
">Imaginemur igitur lineam
<
var
>.b.e.</
var
>
eſſe
<
lb
/>
dimidium minoris axis
<
reg
norm
="
alicuius
"
type
="
simple
">alicuiꝰ</
reg
>
ellipſis
<
lb
/>
cuius quidem figuræ ponamus
<
var
>.d.</
var
>
et
<
var
>.c.</
var
>
<
lb
/>
centra ipſius circunſcriptionis eſſe, cu
<
lb
/>
ius
<
reg
norm
="
circunferentia
"
type
="
context
">circunferẽtia</
reg
>
, nullidubium eſt, quin
<
lb
/>
extra propoſitum circulum tranſitura,
<
lb
/>
& in vno tantummodo puncto ipſum
<
lb
/>
circulum tactura ſit, qui exiſtat
<
var
>.e.</
var
>
<
lb
/>
figuræ
<
var
>.A.</
var
>
ſeparatum tamen à puncto
<
lb
/>
e. figuræ
<
var
>.B</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4338
"
xml:space
="
preserve
">Tunc ſi protracta fue-
<
lb
/>
rit linea
<
var
>.d.e.</
var
>
figuræ
<
var
>.B.</
var
>
vſque ad gi
<
lb
/>
<
figure
xlink:label
="
fig-0374-03
"
xlink:href
="
fig-0374-03a
"
number
="
415
">
<
image
file
="
0374-03
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0374-03
"/>
</
figure
>
rum ellipticum in puncto
<
var
>.g.</
var
>
à quo
<
lb
/>
ad punctum
<
var
>.c.</
var
>
ducta etiam ſit linea
<
lb
/>
<
var
>g.c</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4339
"
xml:space
="
preserve
">tunc
<
reg
norm
="
manifeſtum
"
type
="
context
">manifeſtũ</
reg
>
erit duas lineas
<
lb
/>
<
var
>d.e.</
var
>
et
<
var
>.e.c.</
var
>
figuræ
<
var
>.A.</
var
>
ſimul iunctas,
<
lb
/>
æquales eſſe duabus
<
var
>.d.g.</
var
>
et
<
var
>.g.c.</
var
>
ſi-
<
lb
/>
mul poſitis, vt etiam ex .52. tertij
<
lb
/>
Pergei facilè videre eſt, ſed ex .21.
<
lb
/>
primi Euclid. iam certò ſcimus
<
var
>.d.g.c.</
var
>
longiores eſſe
<
var
>.d.e.c.</
var
>
ſiguræ
<
var
>.B.</
var
>
ergo
<
var
>.d.e.c.</
var
>
figu-
<
lb
/>
ræ
<
var
>.A.</
var
>
longiores ſunt
<
var
>.d.e.c.</
var
>
figuræ
<
var
>.B.</
var
>
quod eſt propoſitum.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4340
"
xml:space
="
preserve
">Quod etiam mihinunc circa hoc ſuccurrit, tibi libenter ſignifico, hoc eſt, quod
<
lb
/>
ſicut in ellipſi duæ lineæ
<
var
>.d.e.e.c.</
var
>
figuræ
<
var
>.A.</
var
>
ſimul iunctæ, ſunt ſemper æquales duabus
<
lb
/>
lineis
<
var
>.d.g.g.c.</
var
>
in longitudine, ita in circulo duæ
<
var
>.d.e.e.c.</
var
>
figuræ
<
var
>.A.</
var
>
æquales ſunt in
<
lb
/>
potentia duabus
<
var
>.d.e.e.c.</
var
>
figurę
<
var
>.B</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4341
"
xml:space
="
preserve
">Manifeſtum enim primum eſt ex penultima primi in figura
<
var
>.A.</
var
>
quadratum
<
var
>.e.c.</
var
>
<
lb
/>
æquale eſſe duobus quadratis ſcilicet
<
var
>.e.b.</
var
>
et
<
var
>.b.c.</
var
>
& quadratum
<
var
>.e.d.</
var
>
æquale duobus
<
var
>.
<
lb
/>
e.b.</
var
>
et
<
var
>.b.d</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4342
"
xml:space
="
preserve
">Quare quadrata
<
var
>.e.c.</
var
>
et
<
var
>.e.d.</
var
>
æqualia ſunt quadratis
<
var
>.e.b.</
var
>
figuræ
<
var
>.A.</
var
>
et
<
var
>.e.
<
lb
/>
b.</
var
>
figurę. B et
<
var
>.b.c.</
var
>
et
<
var
>.b.d.</
var
>
hoc eſt duplo quadrati
<
var
>.e.a.</
var
>
(ducta cum fuerit
<
var
>.e.a.</
var
>
perpen-
<
lb
/>
dicularis ad
<
var
>.c.b.d.a.</
var
>
) duplo quadrati
<
var
>.a.b.</
var
>
ex penultima primi, & duplo quadrati
<
var
>.b.
<
lb
/>
c</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4343
"
xml:space
="
preserve
">Sed quadrata
<
var
>.d.e.</
var
>
et
<
var
>.e.c.</
var
>
figurę
<
var
>.B.</
var
>
æqualia ſunt duplo quadrati
<
var
>.a.e.</
var
>
& quadrato
<
var
>a.d.</
var
>
</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>