Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(382)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div737
"
type
="
section
"
level
="
3
"
n
="
42
">
<
div
xml:id
="
echoid-div737
"
type
="
letter
"
level
="
4
"
n
="
1
">
<
pb
o
="
382
"
rhead
="
IO. BAPT. BENED.
"
n
="
394
"
file
="
0394
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0394
"/>
<
p
>
<
s
xml:id
="
echoid-s4523
"
xml:space
="
preserve
">In eo quod à me petis, mittendo te ad Eutotium, tibi non ſatisfacerem, cum Eu-
<
lb
/>
totius citet ſextum librum Pergei, quem nunquam vidimus,
<
reg
norm
="
ſupponatque
"
type
="
simple
">ſupponatq́;</
reg
>
ea, quæ nec
<
lb
/>
ipſe nec alius vnquam quod ſcimus probauit.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4524
"
xml:space
="
preserve
">Deſideras enim demonſtrationem illius quod Archimedes dicit inter primam,
<
lb
/>
& ſecundam propoſitionem ſecundi libri, vbi tractat de centris grauium, propte-
<
lb
/>
rea quod illud ſupponit pro manifeſto.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4525
"
xml:space
="
preserve
">Sit enim figura hic ſubſcripta, ferè ſimilis parabolæ poſitæ in .2. propoſitione di
<
lb
/>
cti libri, vt in impreſſione Baſileenſi habetur,
<
reg
norm
="
ſintque
"
type
="
simple
">ſintq́;</
reg
>
diuiſæ duæ
<
var
>.a.b.</
var
>
et
<
var
>.b.c.</
var
>
per æqua
<
lb
/>
lia à punctis
<
var
>.x.</
var
>
et
<
var
>.u.</
var
>
<
reg
norm
="
protractisque
"
type
="
simple
">protractisq́;</
reg
>
<
var
>.f.x.</
var
>
et
<
var
>.u.i.</
var
>
ad
<
var
>.b.d.</
var
>
quæ inuicem etiam erunt parallelę
<
lb
/>
ex .30. primi Eucli. </
s
>
<
s
xml:id
="
echoid-s4526
"
xml:space
="
preserve
">vnde ipſæ etiam, diametri erunt ipſarum portionum: </
s
>
<
s
xml:id
="
echoid-s4527
"
xml:space
="
preserve
">vt ex eo col
<
lb
/>
ligere eſt, quod in .49. primi lib. Pergei probatur. </
s
>
<
s
xml:id
="
echoid-s4528
"
xml:space
="
preserve
">Imaginando poſtea ad puncta
<
var
>.b.
<
lb
/>
f.</
var
>
er
<
unsure
/>
<
var
>.i.</
var
>
tres contingentes, manifeſtum erit punctum
<
var
>.b.</
var
>
illud eſſe quod terminat alti-
<
lb
/>
tudinem huiuſmodi portionis, et
<
var
>.f.</
var
>
et
<
var
>.i.</
var
>
terminantia altitudines partialium, ex .5. ſe
<
lb
/>
cundi ipſius Pergei, eo quod dictæ contingentes paralellæ erunt ipſis baſibus, vnde
<
lb
/>
trianguli inſcripti, eaſdem habebunt altitudines, quas portiones ipſæ, quod erit ex
<
lb
/>
mente Archimedis. </
s
>
<
s
xml:id
="
echoid-s4529
"
xml:space
="
preserve
">Et ſic deinceps poteris multiplicare angulos ſiguræ rectilineæ
<
lb
/>
in parabola, quæ deſignata erit vt deſiderat Archimedes, qui quidem dicit, quod
<
lb
/>
protractæ cum fuerint aliæ deinceps poſt
<
var
>.f.i.</
var
>
ipſæ inuicem ęquidiſtantes
<
reg
norm
="
erunt
"
type
="
context
">erũt</
reg
>
, diuiſę-
<
lb
/>
q́ue peræqualia ab
<
var
>.d.b.</
var
>
quod
<
reg
norm
="
quanuis
"
type
="
context
">quãuis</
reg
>
<
reg
norm
="
verum
"
type
="
context
">verũ</
reg
>
ſit,
<
reg
norm
="
tantum
"
type
="
wordlist/context
">tñ</
reg
>
ab Eutotio non ſatis
<
reg
norm
="
demonſtratum
"
type
="
context context
">demõſtratũ</
reg
>
<
lb
/>
eſt, cum ſupponat
<
var
>.a.f.b.</
var
>
æqualem eſſe ipſi
<
var
>.b.i.c.</
var
>
probare volens eius diametros æqua
<
lb
/>
les eſſe abſque aliqua citata ratione, quæ quidem ratio eſſet conuerſum .4. propoſi-
<
lb
/>
tionis libri de conoidalibus. </
s
>
<
s
xml:id
="
echoid-s4530
"
xml:space
="
preserve
">Sed oporteret nos
<
reg
norm
="
etiam
"
type
="
context
">etiã</
reg
>
videre .6. librum ipſius Pergei,
<
lb
/>
& propterea tibi non ſatisfacerem.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4531
"
xml:space
="
preserve
">Eſto igitur, ut inuenta ſit linea
<
var
>.K.</
var
>
cuius productum in
<
var
>.u.i.</
var
>
æquale ſit qua drato ip
<
lb
/>
ſius
<
var
>.u.c.</
var
>
inuenta etiam ſit linea
<
var
>.h.</
var
>
cuius productum cum
<
var
>.f.x.</
var
>
æquale ſit quadrato ip-
<
lb
/>
ſius
<
var
>.a.x.</
var
>
vnde ex conuerſo .49. primi ipſius Pergei, proportio ipſius
<
var
>.K.</
var
>
ad
<
var
>.b.c.</
var
>
erit ut
<
lb
/>
ipſius
<
var
>.b.c.</
var
>
ad
<
var
>.b.d.</
var
>
& ipſius
<
var
>.h.</
var
>
ad
<
var
>.a.b.</
var
>
vt ipſius
<
var
>.a.b.</
var
>
ad
<
var
>.b.d</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4532
"
xml:space
="
preserve
">Erit igitur ex .16. ſexti Eucl.
<
lb
/>
quadratum
<
var
>.b.c.</
var
>
æquale producto ipſius
<
var
>.K.</
var
>
in
<
var
>.b.d.</
var
>
& quadratum
<
var
>.a.b.</
var
>
æquale produ-
<
lb
/>
cto ipſius
<
var
>.h.</
var
>
in
<
var
>.b.d.</
var
>
& ex prima ſexti, ita erit ipſius
<
var
>.K.</
var
>
ad
<
var
>.h.</
var
>
vt producti quod fit ex
<
var
>.K.</
var
>
<
lb
/>
in
<
var
>.b.d.</
var
>
ad productum ipſius
<
var
>.h.</
var
>
in
<
var
>.b.d.</
var
>
hoc eſt vt quadrati ipſius
<
var
>.b.c.</
var
>
ad quadratum ip
<
lb
/>
ſius
<
var
>.b.a.</
var
>
ex .16. et .11. quinti, hoc eſt vt quadrati ipſius
<
var
>.u.c.</
var
>
ad quadratum ipſius
<
var
>.a.x.</
var
>
<
lb
/>
hoc eſt ut productum ipſius
<
var
>.k.</
var
>
in
<
var
>.u.i.</
var
>
ad productnm ipſius
<
var
>.h.</
var
>
in
<
var
>.x.f</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4533
"
xml:space
="
preserve
">Nunc ſi ipſius
<
var
>.k.</
var
>
<
lb
/>
ad
<
var
>.h.</
var
>
c
<
unsure
/>
ſt vt producti ipſius
<
var
>.K.</
var
>
in
<
var
>.u.i.</
var
>
ad productum ipſius
<
var
>.h.</
var
>
in
<
var
>.f.x.</
var
>
ergo ex .24. ſexti,
<
lb
/>
& communi conceptu, proportio ipſius
<
var
>.k.</
var
>
ad
<
var
>.h.</
var
>
compoſita erit ex ea quæ ipſius
<
var
>.u.i.</
var
>
<
lb
/>
ad
<
var
>.f.x.</
var
>
& ex ea quæ ipſius
<
var
>.k.</
var
>
ad
<
var
>.h</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4534
"
xml:space
="
preserve
">Cum ergo dempta fuerit proportio ipſius
<
var
>.k.</
var
>
ad
<
var
>.h.</
var
>
<
lb
/>
(vt ſimplex) à proportione ipſius
<
var
>.k.</
var
>
ad
<
var
>.h.</
var
>
(vt compoſita) reliquum nihil erit. </
s
>
<
s
xml:id
="
echoid-s4535
"
xml:space
="
preserve
">Qua-
<
lb
/>
re
<
var
>.f.x.</
var
>
æqualis erit ipſi
<
var
>.u.i</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4536
"
xml:space
="
preserve
">Sed quod
<
var
>.f.m.</
var
>
æqualis ſit ipſi
<
var
>.m.i</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4537
"
xml:space
="
preserve
">Videto in Eutotio, quia hoc ſatis ſui natura
<
lb
/>
facile eſt.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4538
"
xml:space
="
preserve
">Sed accipe alium modum breuiorem ad probandum
<
var
>.f.x.</
var
>
eſſe æqualem ipſi
<
var
>.u.i</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4539
"
xml:space
="
preserve
">Finge lineam
<
var
>.e.b.g.</
var
>
conting entem in puncto
<
var
>.b.</
var
>
prolungatisq́ue diametris
<
var
>f.
<
lb
/>
x.</
var
>
et
<
var
>.u.i.</
var
>
vſque ad contingentem ipſam, habebis
<
var
>.f.e.</
var
>
æqualem ipſi
<
var
>.f.x.</
var
>
et
<
var
>.g.i.</
var
>
ipſi
<
var
>.u.i.</
var
>
<
lb
/>
Ex .35. primi Pergei, producta poſtea
<
var
>.x.u.</
var
>
habeb is ex .2. ſexti Eucli
<
var
>.x.u.</
var
>
parallelam
<
lb
/>
ipſi
<
var
>.a.c.</
var
>
ſed
<
var
>.e.g.</
var
>
parallela eſt ipſimet
<
var
>.a.c.</
var
>
ex quinta ſecundi ipſius Pergei, </
s
>
<
s
xml:id
="
echoid-s4540
"
xml:space
="
preserve
">quare ex .30
<
lb
/>
primi Euclid
<
var
>.e.g.</
var
>
parallela erit ipſi
<
var
>.u.x.</
var
>
& ex .34. eiuſdem æqualis erit
<
var
>.e.x.</
var
>
ipſi
<
var
>.u.g.</
var
>
<
lb
/>
vnde
<
var
>.f.x.</
var
>
etiam æqualis erit
<
var
>.u.i.</
var
>
ex communi conceptu.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4541
"
xml:space
="
preserve
">Sed ne quid deſideres probabo
<
var
>.f.m.</
var
>
æqualem eſſe ipſi
<
var
>.m.i</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4542
"
xml:space
="
preserve
">Iam igitur ſcis quod </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>