Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of handwritten notes

< >
< >
page |< < (395) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div737" type="section" level="3" n="42">
              <div xml:id="echoid-div737" type="letter" level="4" n="1">
                <pb o="395" rhead="EPISTOL AE." n="407" file="0407" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0407"/>
                <p>
                  <s xml:id="echoid-s4685" xml:space="preserve">Habemus igitur
                    <reg norm="nuncomnem" type="context">nuncomnẽ</reg>
                    <unsure/>
                  s illas conditiones quas Archimedes in præcedenti
                    <lb/>
                  propoſitione ſupponit. </s>
                  <s xml:id="echoid-s4686" xml:space="preserve">Vnde ex rationibus ibi allegatis ſequitur
                    <var>.f.r.</var>
                  eſſe duas quin-
                    <lb/>
                  tas ipſius
                    <var>.m.n.</var>
                  hoc eſt ipſius
                    <var>.f.b</var>
                  . </s>
                  <s xml:id="echoid-s4687" xml:space="preserve">Quapropter punctum
                    <var>.r.</var>
                  centrum erit ponderis to-
                    <lb/>
                  tius ſectionis parabolæ ex .8. ſecundi lib. de ponderibus eiuſdem Archimedis.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4688" xml:space="preserve">Inquit nunc Archimedes, quod exiſtente
                    <var>.q.</var>
                  centro ponderis ipſius parabolæ
                    <var>.d.
                      <lb/>
                    b.e.</var>
                  partialis, centrum fruſti erit in linea recta
                    <var>.q.r.f.</var>
                  ita remotum à centro
                    <var>.r.</var>
                  quod
                    <lb/>
                  proportio
                    <var>.q.r.</var>
                  ad partem illam ipſius
                    <var>.r.f.</var>
                  quæ reperitur inter centrum
                    <var>.r.</var>
                  & centrum
                    <lb/>
                  huius fruſti æqualis eſt proportioni totius parabolæ ad partialem. </s>
                  <s xml:id="echoid-s4689" xml:space="preserve">Quod quidem ve
                    <lb/>
                  rum eſt ex .8. primi libri eiuſdem.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4690" xml:space="preserve">Inquit etiam punctum
                    <var>.i.</var>
                  illud eſſe, eo quod cum probatum ſit
                    <var>.f.r.</var>
                  duas quintas eſ-
                    <lb/>
                  ſe ipſius
                    <var>.f.b.</var>
                  ideo
                    <var>.b.r.</var>
                  tres quintas erit ipſius
                    <var>.b.f.</var>
                  vt ipſe dicit.</s>
                </p>
                <figure position="here" number="443">
                  <image file="0407-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0407-01"/>
                </figure>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>