Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(59)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div7
"
type
="
chapter
"
level
="
2
"
n
="
1
">
<
div
xml:id
="
echoid-div177
"
type
="
math:theorem
"
level
="
3
"
n
="
90
">
<
p
>
<
s
xml:id
="
echoid-s776
"
xml:space
="
preserve
">
<
pb
o
="
59
"
rhead
="
THEOREM. ARIT.
"
n
="
71
"
file
="
0071
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0071
"/>
eſſe gnomoni
<
var
>.e.c.u.</
var
>
<
reg
norm
="
itemque
"
type
="
simple
">itemq́;</
reg
>
gnomonem
<
var
>.b.f.d.</
var
>
æqualem gnomoni
<
var
>.b.o.d.</
var
>
at hic gno-
<
lb
/>
mon
<
var
>.b.o.d.</
var
>
ex præſuppoſito, maior eſt gnomone
<
var
>.e.o.u.</
var
>
duabus vnitatibus
<
var
>.b.</
var
>
et
<
var
>.d.</
var
>
<
lb
/>
Itaque etiam gnomon
<
var
>.b.f.d.</
var
>
duabus vnitatibus gnomonem
<
var
>.e.c.u.</
var
>
ſuperabit. </
s
>
<
s
xml:id
="
echoid-s777
"
xml:space
="
preserve
">Qua-
<
lb
/>
re
<
var
>.b.f.d.</
var
>
erit impar immediatè ſequens ternarium, qui coniunctus quadrato
<
var
>.o.c.</
var
>
<
lb
/>
quadratum ſubſequens componet. </
s
>
<
s
xml:id
="
echoid-s778
"
xml:space
="
preserve
">Eadem ratione probabitur de quadrato
<
var
>.o.n.</
var
>
ſe
<
lb
/>
quenti
<
var
>.o.f.</
var
>
& gnomone
<
var
>.i.n.a.</
var
>
cum hic ordo ſpeculationis ſit vniuerſalis. </
s
>
<
s
xml:id
="
echoid-s779
"
xml:space
="
preserve
">In
<
lb
/>
quo cernitur quemlibet gnomonem ſibi
<
reg
norm
="
contiguum
"
type
="
context
">contiguũ</
reg
>
inferiorem ſemper duabus vni-
<
lb
/>
tat ibus excedere, cumque quadrata non niſi gnomonibus ſibi inuicem ſuccedant.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s780
"
xml:space
="
preserve
">Sed
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
primus
<
var
>.e.c.u.</
var
>
diſpar fuerit,
<
reg
norm
="
proculdubio
"
type
="
simple
">ꝓculdubio</
reg
>
<
reg
norm
="
etiam
"
type
="
context
">etiã</
reg
>
<
reg
norm
="
neceſſarioque
"
type
="
simple
">neceſſarioq́;</
reg
>
cæteri diſpares
<
reg
norm
="
erunt
"
type
="
context
">erũt</
reg
>
.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s781
"
xml:space
="
preserve
">Ex qua ſpeculatione, oritur regula ab antiquis tradita
<
lb
/>
inueniendi vltimi numeri diſparis
<
reg
norm
="
concurrentis
"
type
="
context
">cõcurrentis</
reg
>
ad
<
reg
norm
="
compo ſitionem
"
type
="
context
">cõpo
<
lb
/>
<
figure
xlink:label
="
fig-0071-01
"
xlink:href
="
fig-0071-01a
"
number
="
99
">
<
image
file
="
0071-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0071-01
"/>
</
figure
>
ſitionem</
reg
>
alicuius quadrati. </
s
>
<
s
xml:id
="
echoid-s782
"
xml:space
="
preserve
">Vt ſi quis ſeire deſideret nu-
<
lb
/>
merum vltimum diſparem, quo mediante quadratum
<
var
>.
<
lb
/>
o.n.</
var
>
conſtitutum fuit, quod aliud non eſt quam ſcire
<
lb
/>
quantus ſit numerus vltimi gnomonis
<
var
>.i.n.a.</
var
>
æqualis gno
<
lb
/>
moni
<
var
>.i.o.a</
var
>
. </
s
>
<
s
xml:id
="
echoid-s783
"
xml:space
="
preserve
">Itaque vt ſciamus hunc gnomonem
<
var
>.i.o.a.</
var
>
<
lb
/>
patet duplicandam eſſe radicem
<
var
>.o.e.b.i.</
var
>
<
reg
norm
="
dabiturque
"
type
="
simple punctuation
">dabiturq́,</
reg
>
<
var
>.o.e.
<
lb
/>
b.i.</
var
>
et
<
var
>.o.u.d.a.</
var
>
vbi bis reperitur
<
var
>.o.</
var
>
nos autem tantummo
<
lb
/>
do quærimus ſcire gnomonem .i.b.e.o.u.d.a. </
s
>
<
s
xml:id
="
echoid-s784
"
xml:space
="
preserve
">Itaque
<
lb
/>
minor eſt vnitate duplo radicis, cum unitas
<
var
>.o.</
var
>
bis repe-
<
lb
/>
tatur, quæ tamen in gnomone ſemel tantum ſumebatur.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div179
"
type
="
math:theorem
"
level
="
3
"
n
="
91
">
<
head
xml:id
="
echoid-head108
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
91
">XCI</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s785
"
xml:space
="
preserve
">CVR ſumma quadratorum, quorum radices ſunt in proportione ſeſquitertia
<
lb
/>
nempe .4. ad .3. quadrata ſit.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s786
"
xml:space
="
preserve
">Exempli gratia, ſumemus quadratum .3. ſcilicet 9. quod in ſummam cum qua-
<
lb
/>
drato .4. colligemus, nempè .16.
<
reg
norm
="
eritque
"
type
="
simple
">eritq́;</
reg
>
quadratum .25. & ita quadratum .6. hoc eſt
<
num
value
="
36
">.
<
lb
/>
36.</
num
>
collectum cum quadrato .8. nempè .64. efficiet quadratum .100. ita etiam qua-
<
lb
/>
dratum .9. hoceſt .81. coniunctum quadrato .12. nempè .144. producet quadra-
<
lb
/>
tum .225.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s787
"
xml:space
="
preserve
">In cuius gratiam ſint duo quadrata ſubſcripta
<
var
>.q.o.</
var
>
et
<
var
>.q.a.</
var
>
quorum radices ſint
<
var
>.q.</
var
>
<
lb
/>
<
figure
xlink:label
="
fig-0071-02
"
xlink:href
="
fig-0071-02a
"
number
="
100
">
<
image
file
="
0071-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0071-02
"/>
</
figure
>
g. et
<
var
>.q.p.</
var
>
hoc eſt
<
var
>.q.g.</
var
>
quatuor vnitatum, et
<
var
>.q.
<
lb
/>
p.</
var
>
trium, ex quo
<
var
>.q.a.</
var
>
erit .16. vnitatum et
<
var
>.q.o.</
var
>
<
lb
/>
nouem. </
s
>
<
s
xml:id
="
echoid-s788
"
xml:space
="
preserve
">Ad hæc cogitemus applicari quadra-
<
lb
/>
to
<
var
>.q.a.</
var
>
gnomonem
<
var
>.f.s.h.</
var
>
tam amplum ſiue la-
<
lb
/>
tum
<
reg
norm
="
quam
"
type
="
context
">quã</
reg
>
gnomon
<
var
>.b.a.g.</
var
>
nempè vt
<
var
>.h.</
var
>
ſit æqua
<
lb
/>
lis .g: g. verò differentia ſit qua
<
var
>.q.g.</
var
>
maior eſt
<
var
>.
<
lb
/>
q.p.</
var
>
<
reg
norm
="
huncque
"
type
="
simple
">huncq́;</
reg
>
gnomonem
<
var
>.f.s.h.</
var
>
dico ęqualem eſ
<
lb
/>
ſe quadrato
<
var
>.q.o.</
var
>
nam ex preſuppoſito
<
var
>.g.</
var
>
terra
<
lb
/>
dicem
<
var
>.q.p.</
var
>
ingreditur, & quater
<
var
>.q.g.</
var
>
ex quo,
<
lb
/>
tres partes
<
var
>.q.k.p.</
var
>
inter ſe æquales ſunt vnde
<
lb
/>
etiam quadratum
<
var
>.q.o.</
var
>
nouem partibus ſuper-
<
lb
/>
ficialibus quadratis conſtabit, quarum ſingula
<
lb
/>
rum radix æqualis erit
<
var
>.g.</
var
>
cumque præcedenti
<
lb
/>
theoremate didicerimus quemlibet gnomo-
<
lb
/>
nem quadrati immediatè ſequentis æquę amplitudinis cum gnomone præcedentis, </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>