Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(60)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div7
"
type
="
chapter
"
level
="
2
"
n
="
1
">
<
div
xml:id
="
echoid-div179
"
type
="
math:theorem
"
level
="
3
"
n
="
91
">
<
p
>
<
s
xml:id
="
echoid-s788
"
xml:space
="
preserve
">
<
pb
o
="
60
"
rhead
="
IO. BAPT. BENED.
"
n
="
72
"
file
="
0072
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0072
"/>
per duab. vnitatibus ſuperficialibus creſcere,
<
reg
norm
="
quarum
"
type
="
context
">quarũ</
reg
>
<
reg
norm
="
ſingularum
"
type
="
context
">ſingularũ</
reg
>
radix æqualis eſt
<
var
>.g.</
var
>
ne
<
lb
/>
ceſſariò ſequitur gnomonem
<
var
>.b.a.g.</
var
>
duabus partibus aut vnitatibus gnomonem
<
var
>.d.
<
lb
/>
o.p.</
var
>
ſuperare, ita vt gnomon
<
var
>.b.a.g.</
var
>
ſeptem vnitatibus, aut partibus ſuperficialibus
<
lb
/>
quadratis conſtet. </
s
>
<
s
xml:id
="
echoid-s789
"
xml:space
="
preserve
">Quare eadem ratione gnomon
<
var
>.f.s.h.</
var
>
conſtabit nouem ſimilibus.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s790
"
xml:space
="
preserve
">Itaque æqualis erit quadrato
<
var
>.q.o</
var
>
. </
s
>
<
s
xml:id
="
echoid-s791
"
xml:space
="
preserve
">Quamobrem verum eſt, quòd quadrato
<
var
>.q.o.</
var
>
<
lb
/>
coniuncto quadrato
<
var
>.q.a.</
var
>
proueniet quadratum
<
var
>.q.s.</
var
>
cuius radix ita differet à
<
var
>.q.g.</
var
>
vt
<
var
>.
<
lb
/>
q.g.</
var
>
à
<
var
>.q.p</
var
>
: ex quo tres radices arithmeticè inter ſe continuæ proportionales erunt.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s792
"
xml:space
="
preserve
">Idipſum dico ſi
<
var
>.q.p.</
var
>
fuerit .6. et
<
var
>.q.g</
var
>
: 8: </
s
>
<
s
xml:id
="
echoid-s793
"
xml:space
="
preserve
">tunc enim ſingulæ partes
<
var
>.q.k.p.g.h.</
var
>
æquipol
<
lb
/>
lebunt duabus vnitatibus, quæ cogitabuntur
<
lb
/>
<
figure
xlink:label
="
fig-0072-01
"
xlink:href
="
fig-0072-01a
"
number
="
101
">
<
image
file
="
0072-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0072-01
"/>
</
figure
>
in ſummam collectæ, ut cum patribus
<
var
>.q.k.p.
<
lb
/>
g.h.</
var
>
integris contemplari liceat. </
s
>
<
s
xml:id
="
echoid-s794
"
xml:space
="
preserve
">Idem acci-
<
lb
/>
det fi
<
var
>.q.p.</
var
>
erit .9. et
<
var
>.q.g.</
var
>
12. fingulæ enim par-
<
lb
/>
tes
<
var
>.q.K.p.g.h.</
var
>
tripartitæ erunt. </
s
>
<
s
xml:id
="
echoid-s795
"
xml:space
="
preserve
">Idcircò dixi
<
lb
/>
gnomonem
<
var
>.f.s.h.</
var
>
tam amplum cogitari de-
<
lb
/>
bere, quam gnomon
<
var
>.b.a.g.</
var
>
nempè ut
<
var
>.h.</
var
>
æqua
<
lb
/>
lis ſit
<
var
>.g</
var
>
. </
s
>
<
s
xml:id
="
echoid-s796
"
xml:space
="
preserve
">Idem occurret ſi
<
var
>.q.g.</
var
>
erit .12. et
<
var
>.q.p.</
var
>
<
lb
/>
quinque, quod cum fuerit patebitex præce-
<
lb
/>
dentis theorematis ſpeculatione, gnomonem
<
lb
/>
<
var
>f.s.h</
var
>
: 25. vnitatibus conſtare, cogitatum am-
<
lb
/>
plitudinis ſimplicis vnitatis denominatæ in
<
var
>.q.
<
lb
/>
p.</
var
>
aut
<
var
>.q.g.</
var
>
non amplitudinis gnomonis
<
var
>.b.a.g.</
var
>
<
lb
/>
qui ſeptem vnitatibus latus eſſet. </
s
>
<
s
xml:id
="
echoid-s797
"
xml:space
="
preserve
">Cum igitur
<
var
>.
<
lb
/>
q.p.</
var
>
quinque vnitatibus linearibus conſtet ſcimus
<
var
>.q.o</
var
>
: 25. ſuperficialibus conſtare,
<
lb
/>
collecto itaque in ſummam quadrato
<
var
>.q.o.</
var
>
cum quadrato
<
var
>.q.a.</
var
>
cognoſcetur quadra-
<
lb
/>
tum
<
var
>.q.s.</
var
>
vnà etiam eius radix. </
s
>
<
s
xml:id
="
echoid-s798
"
xml:space
="
preserve
">Eadem ratione, alia multa quadrata ſimilia contem-
<
lb
/>
plari licebit.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div181
"
type
="
math:theorem
"
level
="
3
"
n
="
92
">
<
head
xml:id
="
echoid-head109
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
92
">XCII</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s799
"
xml:space
="
preserve
">CVR propoſito numero pari maiori binario, qui detrahi & in ſummam colli-
<
lb
/>
gi debeat ex altero numero quærendo, vt tam reſiduum quam ſumma ſint
<
lb
/>
quadrata numerorum integrornm. </
s
>
<
s
xml:id
="
echoid-s800
"
xml:space
="
preserve
">Rectè dimidium propoſiti numeri in ſeipſum
<
lb
/>
multiplicamus, & quadrato huic addimus vnitatem,
<
reg
norm
="
eritque
"
type
="
simple
">eritq́;</
reg
>
numerus quæfitus.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s801
"
xml:space
="
preserve
">Exempli gratia proponitur .12. numerus detrahendus, & coniungendus nume-
<
lb
/>
ro inueſtigando, ut reſiduum detractionis, & ſumma ſint quadrati numeri. </
s
>
<
s
xml:id
="
echoid-s802
"
xml:space
="
preserve
">Addi-
<
lb
/>
ta vnitate ipſi .36. quadrato dimidij, dabitur .37. numerus quæſitus.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s803
"
xml:space
="
preserve
">Cuius ſpeculationis gratia, ſubſcripta quatuor quadrata cogitemus
<
var
>.g.p</
var
>
:
<
var
>u.i</
var
>
:
<
var
>t.c</
var
>
:
<
var
>n.
<
lb
/>
K.</
var
>
<
reg
norm
="
cogitemusque
"
type
="
simple
">cogitemusq́;</
reg
>
quadratum
<
var
>.g.p.</
var
>
eſſe quadratum ſummæ,
<
var
>K.n.</
var
>
verò reſidui ſubtractio-
<
lb
/>
nis:
<
var
>u.i.</
var
>
<
reg
norm
="
autem
"
type
="
wordlist
">aũt</
reg
>
numerum
<
reg
norm
="
inueſtigandum
"
type
="
context context
">inueſtigãdũ</
reg
>
, ex quo gnomon
<
var
>.u.d.i.</
var
>
cognoſcetur ita etiam et
<
var
>.n.
<
lb
/>
o.K.</
var
>
qui inter ſe ſunt æquales. </
s
>
<
s
xml:id
="
echoid-s804
"
xml:space
="
preserve
">Iam certi erimus
<
var
>.e.i.</
var
>
eſſe plus quam dimidium gno-
<
lb
/>
monis
<
var
>.n.o.K</
var
>
. </
s
>
<
s
xml:id
="
echoid-s805
"
xml:space
="
preserve
">Itaque cogitemus rectangulum
<
var
>.r.c.</
var
>
exactum
<
reg
norm
="
dimidium
"
type
="
context
">dimidiũ</
reg
>
eſſe gnomonis
<
var
>.
<
lb
/>
n.o.K.</
var
>
ex unitatibus ſuperficialibus quarum una erit
<
var
>.m.a</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s806
"
xml:space
="
preserve
">Cuius numeri quadratum ſit
<
var
>.t.c.</
var
>
vnde etiam cognitum & cum
<
var
>.K.c.</
var
>
ex communi
<
lb
/>
ſcientia ſit vnitas linearis, </
s
>
<
s
xml:id
="
echoid-s807
"
xml:space
="
preserve
">propterea quod
<
var
>.m.a.</
var
>
eſt ſuperficialis hoc eſt quadrata,
<
lb
/>
quæ detracta ex
<
var
>.q.c.</
var
>
dimidio gnomonis
<
var
>.n.o.K.</
var
>
(quamuis lineari) ſupererit
<
var
>.K.q.</
var
>
co
<
lb
/>
gnita, numerorum integrorum (nota
<
var
>q.K.i.</
var
>
ſemper minor erit duabus vnitatibus li-
<
lb
/>
nearibus & maior vna ex dictis vnitatibus, ut ex te ipſo contemplari potes) </
s
>
<
s
xml:id
="
echoid-s808
"
xml:space
="
preserve
">quare
<
var
>. </
var
>
</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>