Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(64)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div7
"
type
="
chapter
"
level
="
2
"
n
="
1
">
<
div
xml:id
="
echoid-div187
"
type
="
math:theorem
"
level
="
3
"
n
="
96
">
<
p
>
<
s
xml:id
="
echoid-s851
"
xml:space
="
preserve
">
<
pb
o
="
64
"
rhead
="
IO. BAPT. BENED.
"
n
="
76
"
file
="
0076
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0076
"/>
numerus quæſitus erit.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s852
"
xml:space
="
preserve
">Quod intelligendum eſttamen quoties primus terminus differentia
<
reg
norm
="
terminorum
"
type
="
context
">terminorũ</
reg
>
<
lb
/>
eſt, nempe aſcendens ipſorum ter minorum.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s853
"
xml:space
="
preserve
">Cuius ratio manifeſtè ſpeculari poteſt in figura præcedentis theorematis. </
s
>
<
s
xml:id
="
echoid-s854
"
xml:space
="
preserve
">Nam
<
lb
/>
diuiſa
<
var
>.a.o.</
var
>
per
<
var
>.n.n.n.n.</
var
>
eadem proportio erit
<
var
>.a.o.</
var
>
ad proueniens, quæ. n
<
var
>.n.n.
<
lb
/>
n.</
var
>
ad vnitatem
<
var
>.n.</
var
>
ex definitione diuiſionis. </
s
>
<
s
xml:id
="
echoid-s855
"
xml:space
="
preserve
">At ſuperius dictum fuit ita ſe ha bere
<
var
>.a.
<
lb
/>
o.</
var
>
ad
<
var
>.o.n.</
var
>
vt
<
var
>.n.n.n.n.</
var
>
ad
<
var
>.n.</
var
>
ex quo ſequitur ex .11. et .9. quinti pr oueniens eſſe nume-
<
lb
/>
rum quæſitum
<
var
>.o.n</
var
>
.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div188
"
type
="
math:theorem
"
level
="
3
"
n
="
97
">
<
head
xml:id
="
echoid-head114
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
97
">XCVII</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s856
"
xml:space
="
preserve
">VBI verò primus terminus, reliquorum non erit differentia. </
s
>
<
s
xml:id
="
echoid-s857
"
xml:space
="
preserve
">Hac de caufa ne-
<
lb
/>
ceſſe eſt detrahere primum ex vltimo,
<
reg
norm
="
reſiduumque
"
type
="
simple
">reſiduumq́;</
reg
>
per numerum aſcenden-
<
lb
/>
tem differentiam ſcilicet, partiri,
<
reg
norm
="
proueniensque
"
type
="
simple
">proueniensq́;</
reg
>
vnitati coniungere, quò numerum
<
lb
/>
terminorum habere poſſimus. </
s
>
<
s
xml:id
="
echoid-s858
"
xml:space
="
preserve
">Scimus etenim tam multas vnitates eſſe in vltimo
<
lb
/>
terminorum quot in omnibus interuallis aut differentijs in ſummam collectis ſimul
<
lb
/>
cum vnitatibus primi termini,
<
reg
norm
="
totque
"
type
="
simple
">totq́;</
reg
>
funt termini, quot interualla ſimul cum pri-
<
lb
/>
motermino. </
s
>
<
s
xml:id
="
echoid-s859
"
xml:space
="
preserve
">Quare fi minimus terminus interuallo æqualis fuerit. </
s
>
<
s
xml:id
="
echoid-s860
"
xml:space
="
preserve
">Vltimo per pri-
<
lb
/>
mum diuiſo, ex a dductis præcedenti theoremate propofitum confequemur. </
s
>
<
s
xml:id
="
echoid-s861
"
xml:space
="
preserve
">
<
reg
norm
="
Itaque
"
type
="
simple
">Itaq;</
reg
>
<
lb
/>
primo termino ex vltimo detracto
<
reg
norm
="
refiduoque
"
type
="
simple
">refiduoq́;</
reg
>
per interuallum, hoc eft numerum dif-
<
lb
/>
ferentiæ diuifo, proueniens erit numerus terminorum abſque primo quod vnus eft,
<
lb
/>
coni uncto quoque dicto prouenienti propoſitum conſequemur.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div189
"
type
="
math:theorem
"
level
="
3
"
n
="
98
">
<
head
xml:id
="
echoid-head115
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
98
">XCVIII</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s862
"
xml:space
="
preserve
">CVR fi quis arithmeticæ progreſſionis dato primo & vltimo fimul cum nume
<
lb
/>
ro terminorum, afcendentem numerum cognofcere voluerit. </
s
>
<
s
xml:id
="
echoid-s863
"
xml:space
="
preserve
">Rectè primuin
<
lb
/>
ex vltimo detrahet,
<
reg
norm
="
refiduumque
"
type
="
simple
">refiduumq́;</
reg
>
per numerum terminorum excepto vno diuidet.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s864
"
xml:space
="
preserve
">Huius theorematis ſpeculatio ex .13. theoremate manifeſta crit, nam in præce-
<
lb
/>
denti cap. numerus terminorum erat proueniens diuiſionis reſidui ſubtractionis pri-
<
lb
/>
mi termini ex vltimo.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div190
"
type
="
math:theorem
"
level
="
3
"
n
="
99
">
<
head
xml:id
="
echoid-head116
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
99
">XCIX</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s865
"
xml:space
="
preserve
">CVR ſi quis maximum omnium terminorum dictæ progreffionis cognofcere
<
lb
/>
voluerit, dato primo vnà cum numero aſcendenti,
<
reg
norm
="
numeroque
"
type
="
simple
">numeroq́;</
reg
>
terminorum. </
s
>
<
s
xml:id
="
echoid-s866
"
xml:space
="
preserve
">Re-
<
lb
/>
ctè numerum afcendentem cum numero terminorum excepto vno multiplicabit,
<
lb
/>
<
reg
norm
="
productoque
"
type
="
simple
">productoq́;</
reg
>
primum terminum coniunget.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s867
"
xml:space
="
preserve
">Cuius quidem theorematis tum ex vndecimo, tum ex ijs quæ præcedentibus ca-
<
lb
/>
pitibus dicta fuerunt, aperta eſt ratio.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div191
"
type
="
math:theorem
"
level
="
3
"
n
="
100
">
<
head
xml:id
="
echoid-head117
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
100
">C</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s868
"
xml:space
="
preserve
">CVR veteres cupientes obtinere ſummam pr
<
unsure
/>
ogreffionis continuæ naturalis,
<
lb
/>
quæab vnitate initium ducit, dato vltimo termino tantummodo. </
s
>
<
s
xml:id
="
echoid-s869
"
xml:space
="
preserve
">Dimidium
<
lb
/>
vltimi-termini
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
toto fequente multiplicabant,
<
reg
norm
="
productumque
"
type
="
simple
">productumq́;</
reg
>
ſumma quæſita erat.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s870
"
xml:space
="
preserve
">Exempli gratia, ſi vltimus terminus eiuſmodi progreſſionis fuerit .7. multiplica- </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>