127115THEOREM. ARIT.
ſed exceſſus quartæ ſupra tertiam eſt .10. vnde ſupra ſecundam erit .18. & ſupra pri-
mam erit .24. quæ omnia ſimul addita erunt .44. & in qualibet harum trium remane-
bit una pars æqualis primæ quantitati, quare ſi ex .96. detractus fuerit numerus .44.
reliquus 52. erit quadruplus primæ, quare prima pars valebit .13. ſecunda .19. ter-
tia .27. & quarta .37. quarum omnium ſumma eſt .96.
mam erit .24. quæ omnia ſimul addita erunt .44. & in qualibet harum trium remane-
bit una pars æqualis primæ quantitati, quare ſi ex .96. detractus fuerit numerus .44.
reliquus 52. erit quadruplus primæ, quare prima pars valebit .13. ſecunda .19. ter-
tia .27. & quarta .37. quarum omnium ſumma eſt .96.
EX poſitionibus autem Tartaleæ in noſtra figura .K. digeſtis, videre poſſumus
quo pacto colligantur huiuſ
modi conſequentes numeri ſimpli-
ces .36. et .52. more figuræ .E. quia
172[Figure 172] colliguntur primò partes compoſi
tæ .9. 15. 23. 33. ex quarum ſumma
80. ſubtrahitur .36. ſumma ſim-
plex ex ſimplicibus partibus .9. 9.
9. 9. & reſiduum quod eſt .44. ſubdu
citur ex .96. ſumma compoſita &
propoſita, vnde remanet .52. pro
ſumma ſimplici, ex numero dato,
cuius proportio ad .13. eadem eſt
quæ .36 ad .9. & proptereà ſuper-
flua eſt ſecunda poſitio, quando ſci
mus inuenire tales duos numeros
conſequentes, vt in hoc exemplo
ſunt .36. et .52. quia ex regula de
tribus poſteà elicitur veritas quæ-
ſita. Idem dico de 33. problemate.
quo pacto colligantur huiuſ
modi conſequentes numeri ſimpli-
ces .36. et .52. more figuræ .E. quia
172[Figure 172] colliguntur primò partes compoſi
tæ .9. 15. 23. 33. ex quarum ſumma
80. ſubtrahitur .36. ſumma ſim-
plex ex ſimplicibus partibus .9. 9.
9. 9. & reſiduum quod eſt .44. ſubdu
citur ex .96. ſumma compoſita &
propoſita, vnde remanet .52. pro
ſumma ſimplici, ex numero dato,
cuius proportio ad .13. eadem eſt
quæ .36 ad .9. & proptereà ſuper-
flua eſt ſecunda poſitio, quando ſci
mus inuenire tales duos numeros
conſequentes, vt in hoc exemplo
ſunt .36. et .52. quia ex regula de
tribus poſteà elicitur veritas quæ-
ſita. Idem dico de 33. problemate.
PRO quo .33. problemate acci
piantur poſitiones primi exem
pli Tonſtalli hoc eſt .33. et .31. vt in figuris hic ſubiectis .P.Q. facile quis poteſt vi-
dere, vbi in figura P. videbit nume-
ros compoſitos, in figura verò .Q. cer
173[Figure 173] net numeros ſimplices, à quibus pro
ueniunt rationes per ſe huiaſmodi
operationis, in figura autem .R. vide
bitur meus ordo, & iſtæ tres figuræ ſi
miles erunt tribus illis primis .A.B.C.
ita quòd cum quis illas intellexerit, il
lico etiam iſtas cognoſcet, vbi etiam
videbit quam confusè ratiocinentur ij
qui ignorant hunc meum ordinem
ſimplicium numerorum, à quibus fluit
tota ratio (vt ſupra dixi) huiuſcemo
di operationis.
piantur poſitiones primi exem
pli Tonſtalli hoc eſt .33. et .31. vt in figuris hic ſubiectis .P.Q. facile quis poteſt vi-
dere, vbi in figura P. videbit nume-
ros compoſitos, in figura verò .Q. cer
173[Figure 173] net numeros ſimplices, à quibus pro
ueniunt rationes per ſe huiaſmodi
operationis, in figura autem .R. vide
bitur meus ordo, & iſtæ tres figuræ ſi
miles erunt tribus illis primis .A.B.C.
ita quòd cum quis illas intellexerit, il
lico etiam iſtas cognoſcet, vbi etiam
videbit quam confusè ratiocinentur ij
qui ignorant hunc meum ordinem
ſimplicium numerorum, à quibus fluit
tota ratio (vt ſupra dixi) huiuſcemo
di operationis.