Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(91)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div7
"
type
="
chapter
"
level
="
2
"
n
="
1
">
<
div
xml:id
="
echoid-div258
"
type
="
math:theorem
"
level
="
3
"
n
="
135
">
<
p
>
<
s
xml:id
="
echoid-s1187
"
xml:space
="
preserve
">
<
pb
o
="
91
"
rhead
="
THEOREM. ARIT.
"
n
="
103
"
file
="
0103
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0103
"/>
propoſiti
<
var
>.a.e.</
var
>
maior, et
<
var
>.e.o.</
var
>
minor,
<
reg
norm
="
Sitque
"
type
="
simple
">Sitq́;</
reg
>
<
var
>.o.k.</
var
>
medius arithmeticus inter dictos, vn-
<
lb
/>
de clarè patebit
<
var
>.o.k.</
var
>
eſſe dimidium ſummæ dictorum terminorum ex .75. theorema
<
lb
/>
te huius libri. </
s
>
<
s
xml:id
="
echoid-s1188
"
xml:space
="
preserve
">Sit ergo productum
<
var
>a.t.</
var
>
id quod fit ex
<
var
>.a.e.</
var
>
in
<
var
>.o.k.</
var
>
et
<
var
>.o.t.</
var
>
ſit
<
reg
norm
="
productum
"
type
="
context
">productũ</
reg
>
<
lb
/>
quod fit ex
<
var
>.e.o.</
var
>
in
<
var
>.o.k.</
var
>
et
<
var
>.n.m.</
var
>
ſit productum quod ſit ex
<
var
>.a.e.</
var
>
in
<
var
>.e.o.</
var
>
quorum vnum-
<
lb
/>
quodque erit dimid ium vniuſcuiuſque producti præcedentis theorematis,
<
lb
/>
ex .18. et .19. ſeptimi Eucli. vnumquodque ſui relatiui. </
s
>
<
s
xml:id
="
echoid-s1189
"
xml:space
="
preserve
">Quare argumentando per
<
lb
/>
mutando à concluſionibus præcedentis theorematis ad has præſentis, habebimus
<
lb
/>
productum.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div260
"
type
="
math:theorem
"
level
="
3
"
n
="
136
">
<
head
xml:id
="
echoid-head154
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
136
">CXXXVI</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1190
"
xml:space
="
preserve
">MEDIVM autem contra
<
reg
norm
="
harmonicum
"
type
="
context
">harmonicũ</
reg
>
inuenire cum quis voluesit inter duos
<
lb
/>
propoſitos terminos, ita faciendum erit, hoc eſt per ſummam datorum ex
<
lb
/>
tremorum diuidatur productum quod fit ex minimo termino in
<
reg
norm
="
differentiam
"
type
="
context
">differẽtiam</
reg
>
dato-
<
lb
/>
rum, prouentus poſtea erit differentia inter maximum & med
<
unsure
/>
um quæſitum.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1191
"
xml:space
="
preserve
">Vt exempli gratia, ſi nobis propoſiti fuerint hi duo termini .3. et .2. ſumma eo-
<
lb
/>
rum erit quinque, per quam cum diuiſerimus productum, quod naſcitur ex mini-
<
lb
/>
mo .2. in differentiam eorum, quæ eſt vnum, quod quidem erit .2. </
s
>
<
s
xml:id
="
echoid-s1192
"
xml:space
="
preserve
">tunc duæ quintæ
<
lb
/>
partes prouenient, quæ ſi demptæ fuerint ex maximo termino, reliquum erit .2.
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
<
lb
/>
3. quintis, hoc eſt medius terminus contta harmonicus.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1193
"
xml:space
="
preserve
">Pro cuius ratione cogitemus
<
var
>.u.d.</
var
>
et
<
var
>.x.c.</
var
>
eſſe duosterminosnobis propoſitos, in-
<
lb
/>
ter quos deſideremus inuenire
<
var
>.o.s.</
var
>
medium ita illis
<
reg
norm
="
relatum
"
type
="
context
">relatũ</
reg
>
, vt proportio exceſſus ip-
<
lb
/>
ſius ſupra
<
var
>.x.c.</
var
>
(qui ſit
<
var
>.e.n.</
var
>
) ad exceſ-
<
lb
/>
ſum
<
var
>.u.d.</
var
>
ſupra
<
var
>.o.s.</
var
>
(qui ſit
<
var
>.n.d.</
var
>
) ea-
<
lb
/>
<
figure
xlink:label
="
fig-0103-01
"
xlink:href
="
fig-0103-01a
"
number
="
142
">
<
image
file
="
0103-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0103-01
"/>
</
figure
>
dem ſit quæ
<
var
>.u.d.</
var
>
ad
<
var
>.x.c</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1194
"
xml:space
="
preserve
">Cogitemus igitur
<
var
>.x.c.</
var
>
coniunctum
<
lb
/>
eſſe cum
<
var
>.u.d.</
var
>
& hæcſumma vocetur
<
var
>.
<
lb
/>
b.d.</
var
>
vnde habebimus proportionem
<
var
>.
<
lb
/>
u.d.</
var
>
ad
<
var
>.u.b.</
var
>
vt
<
var
>.e.n.</
var
>
ad
<
var
>.n.d</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1195
"
xml:space
="
preserve
">Quare
<
reg
norm
="
com- ponendo
"
type
="
context
">cõ-
<
lb
/>
ponendo</
reg
>
ita erit
<
var
>.d.b.</
var
>
ad
<
var
>.u.b.</
var
>
ut
<
var
>.e.d.</
var
>
3d.n.d. ſed quia
<
var
>.d.b</
var
>
:
<
var
>u.b.</
var
>
et
<
var
>.e.d.</
var
>
quantitates no-
<
lb
/>
bis cognitę ſunt, ideò
<
var
>.d.n.</
var
>
ex .20. ſeptimi cognita nobis erit.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div262
"
type
="
math:theorem
"
level
="
3
"
n
="
137
">
<
head
xml:id
="
echoid-head155
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
137
">CXXXVII</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1196
"
xml:space
="
preserve
">SVpponunt antiqui aliquot mercatores dantes pecunias lucro in diuerſis vnius
<
lb
/>
anni temporibus, </
s
>
<
s
xml:id
="
echoid-s1197
"
xml:space
="
preserve
">tunc in fine anni ſumma torius lucri datur cognita, ſed quæ-
<
lb
/>
ritur quantuni
<
unsure
/>
vnicuique illorum exipſa ſumma debeatur.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1198
"
xml:space
="
preserve
">Exempli gratia, primus in principio anni poſuit .100. aurcos, ſecundus verò .100
<
lb
/>
diebus poſt primum poſuit .50. aureos tertius autem .200. diebus poſt primum po-
<
lb
/>
ſuit .25. aureos ſumma lucri poſtea in fine anni fuit aureorum .60.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1199
"
xml:space
="
preserve
">Nunc vt ſciamus quantum huius ſummæ vniduique illorum proueniat, præcipit
<
lb
/>
regula, vt faciamus tria producta, quorum primum ſit ex numero dierum totius an-
<
lb
/>
ni in numerum aureorum primi, vnde tale productum in præſenti caſu erit .36500.
<
lb
/>
ſecundum verò ſit ex numero dierum à primo die in quo ipſe ſecundus poſuit uſque
<
lb
/>
ad finem anni, in numerum ipſorum nummorum, quod erit .13250. tertium autem
<
lb
/>
productum ex diebus tertij in numerum ſuorum aureorum, quod
<
reg
norm
="
quidem
"
type
="
context
">quidẽ</
reg
>
erit .4125.
<
lb
/>
quæ producta ſimul collecta faciunt .53875. deinde multiplicetur vnumquodque </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>