Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(97)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div7
"
type
="
chapter
"
level
="
2
"
n
="
1
">
<
div
xml:id
="
echoid-div274
"
type
="
math:theorem
"
level
="
3
"
n
="
143
">
<
p
>
<
s
xml:id
="
echoid-s1262
"
xml:space
="
preserve
">
<
pb
o
="
97
"
rhead
="
THEOREM. ARIT.
"
n
="
109
"
file
="
0109
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0109
"/>
nem
<
var
>.c.d.</
var
>
ad
<
var
>.d.e.</
var
>
ſi
<
var
>.c.d.</
var
>
accipiemus, vt medium inter
<
var
>.a.d.</
var
>
et
<
var
>.d.e.</
var
>
cognoſcemus etiam
<
lb
/>
proportionem
<
var
>.a.d.</
var
>
ad
<
var
>.d.e.</
var
>
</
s
>
<
s
xml:id
="
echoid-s1263
"
xml:space
="
preserve
">quare etiam eam quæ
<
var
>.a.e.</
var
>
ad
<
var
>.d.e.</
var
>
collocando poſteà.
<
lb
/>
<
var
>d.e.</
var
>
inter
<
var
>.e.f.</
var
>
et
<
var
>.a.e.</
var
>
innoteſcet ea, quæ eſt
<
var
>.a.e.</
var
>
ad
<
var
>.e.f.</
var
>
& ita gradatim accedenrus ad
<
lb
/>
perfectam cognitionem proportionis totius
<
var
>.a.l.</
var
>
ad
<
var
>.k.l</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1264
"
xml:space
="
preserve
">Nunc autem mediante
<
var
>.k.l.</
var
>
<
lb
/>
cognoſcemus proportionem totius
<
var
>.a.l.</
var
>
ad
<
var
>.i.k.</
var
>
& hac mediante, cam cognoſcemus,
<
lb
/>
quæ totius
<
var
>.a.l.</
var
>
ad
<
var
>.g.h.</
var
>
& hac mediante eam quæ totius
<
var
>.a.l.</
var
>
ad
<
var
>.f.g.</
var
>
& ſic gradatim, co
<
lb
/>
gnita nobis erit proportio totius
<
lb
/>
lineæ
<
var
>.a.l.</
var
>
ad ſuam partem
<
var
>.a.c.</
var
>
be-
<
lb
/>
<
figure
xlink:label
="
fig-0109-01
"
xlink:href
="
fig-0109-01a
"
number
="
150
">
<
image
file
="
0109-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0109-01
"/>
</
figure
>
neficio poſteà totius lineæ
<
var
>.a.l.</
var
>
co
<
lb
/>
gnoſcemus proportionem
<
var
>a.c.</
var
>
ad
<
lb
/>
<
var
>a.b.</
var
>
& ſic aliarum reſpectu lineæ
<
var
>.a.b.</
var
>
vt quærebatur, quæ quidem propoſitio, etſi car
<
lb
/>
danica uocetur leuiſſima tamen eſt.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div276
"
type
="
math:theorem
"
level
="
3
"
n
="
144
">
<
head
xml:id
="
echoid-head163
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
144
">CXLIIII</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1265
"
xml:space
="
preserve
">QVamuis multi de modo in ſumma colligendi, ſubtrahendi,
<
reg
norm
="
multiplicandi
"
type
="
context
">multiplicãdi</
reg
>
, & di
<
lb
/>
uidendi proportiones ſcripſerint, nullus tamen (quod ſciam) perfectè, ac
<
lb
/>
ſcientificè ſpeculatus eſt has operationes, quapropter hanc rem cum ſilentio tranſi
<
lb
/>
re nolui, quin aliquid de ipſa conſcribam à ſumma dictarum proportionum in-
<
lb
/>
cohando.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1266
"
xml:space
="
preserve
">Quotieſcunque igitur volunt duas proportiones inuicem aggregare, ſimul ea-
<
lb
/>
rum antecedentia multiplicant, & ſimiliter earum conſequentia. </
s
>
<
s
xml:id
="
echoid-s1267
"
xml:space
="
preserve
">Tunc proportio
<
lb
/>
terminata ab illis productis euadit in ſummam illarum duarum propoſitarum
<
lb
/>
proportionum.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1268
"
xml:space
="
preserve
">Vt exempli gratia, ſi voluerimus colligere proportionem ſeſquialteram cum ſeſ-
<
lb
/>
quitertia, multiplicando .3. cum .4. antecedentia ſcilicet, pro ductum erit .12. poſteà
<
lb
/>
multiplicando .2. cum .3. conſequentia, tunc productum erit .6. </
s
>
<
s
xml:id
="
echoid-s1269
"
xml:space
="
preserve
">Proportio igitur,
<
lb
/>
quæ inter .12. et .6. reperitur. (quæ dupla eſt) eſt ſumma propoſitarum
<
reg
norm
="
proportionum
"
type
="
context
">proportionũ</
reg
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1270
"
xml:space
="
preserve
">Cuius rei ſpeculatio erit huiuſmodi ſint
<
var
>.x.</
var
>
et
<
var
>.u.</
var
>
<
lb
/>
duo antecedentia quarunruis proportionum
<
var
>.t.</
var
>
<
lb
/>
<
figure
xlink:label
="
fig-0109-02
"
xlink:href
="
fig-0109-02a
"
number
="
151
">
<
image
file
="
0109-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0109-02
"/>
</
figure
>
verò et. n ſint eorum conſequentia, productum
<
lb
/>
autem antecedentium ſit
<
var
>.a.g.</
var
>
illud verò quod
<
reg
norm
="
con
"
type
="
context
">cõ</
reg
>
<
lb
/>
ſequentium ſit
<
var
>.d.a.</
var
>
vnde proportio
<
var
>.a.g.</
var
>
ad
<
var
>.a.d.</
var
>
<
lb
/>
compoſita erit ex proportione
<
var
>.x.</
var
>
ad
<
var
>.t.</
var
>
& ex ea,
<
lb
/>
quæ eſt
<
var
>.u.</
var
>
ad
<
var
>.n.</
var
>
per .24. ſexti vel quintam octaui.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1271
"
xml:space
="
preserve
">Patet igitur ratio rectè faciendi, vt ſuprà dictum
<
lb
/>
eſt.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div278
"
type
="
math:theorem
"
level
="
3
"
n
="
145
">
<
head
xml:id
="
echoid-head164
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
145
">CXLV</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1272
"
xml:space
="
preserve
">QVotieſcunque deinde detrahere volunt vnam proportionem ex altera mul-
<
lb
/>
tiplicant antecedens vnius cum conſequenti alterius. </
s
>
<
s
xml:id
="
echoid-s1273
"
xml:space
="
preserve
">Tunc proportio, quę
<
lb
/>
inter talia duo producta incluſa reperitur, eſt reſiduum, ſeu differentia illarum dua-
<
lb
/>
rum proportionum datarum.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1274
"
xml:space
="
preserve
">Vt exempli gratia, ſi aliquis vellet ex proportione dupla detrahere ſeſquialte-
<
lb
/>
ram, multiplicaret .2. antecedens duplæ cum .2. conſequenti ſeſquialteræ, quorum
<
lb
/>
productum eſſet .4. pro antecedenti reſiduę proportionis. </
s
>
<
s
xml:id
="
echoid-s1275
"
xml:space
="
preserve
">Deinde multiplicaret .3
<
lb
/>
antecedens ſeſquialteræ cum .1. conſequenti duplæ, & productum eſſet .3. pro
<
reg
norm
="
con- ſequenti
"
type
="
context
">cõ- </
reg
>
</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>