Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(105)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div7
"
type
="
chapter
"
level
="
2
"
n
="
1
">
<
div
xml:id
="
echoid-div293
"
type
="
appendix
"
level
="
3
"
n
="
1
">
<
p
>
<
s
xml:id
="
echoid-s1356
"
xml:space
="
preserve
">
<
pb
o
="
105
"
rhead
="
THEOREM. ARITH.
"
n
="
117
"
file
="
0117
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0117
"/>
potius veras rationes
<
reg
norm
="
propriaque
"
type
="
simple
">propriaq́;</
reg
>
fundamenta huiuſmodi operationis oftendere, fu-
<
lb
/>
mendo eadem exempla propoſita abipſis practicis, & maximè à Nicolao Tartalea
<
lb
/>
viro accuratiffimo, qui vbicunque potuit ſpeculatus eſt cauiſas
<
reg
norm
="
ipſarum
"
type
="
context
">ipſarũ</
reg
>
operationum,
<
lb
/>
etſi de huiuſmodi falſi regula circa finem cap .8. lib. 17. promittat poſtea loqui, nub-
<
lb
/>
libi tamen loquutus eft. </
s
>
<
s
xml:id
="
echoid-s1357
"
xml:space
="
preserve
">Monendum etiam cenſeo, me nihil de rationibus regulæ
<
lb
/>
falſi ſimplicis dicturum, cum ex ſeipſis ſatis appareant, quod non ita eſt de poſitio-
<
lb
/>
nibus duplis. </
s
>
<
s
xml:id
="
echoid-s1358
"
xml:space
="
preserve
">Incipiam ergo à primo problemate lib. 17. ipſius Tartaleæ, quo
<
reg
norm
="
etiam
"
type
="
context
">etiã</
reg
>
<
lb
/>
ipſe vtitur pro exemplo docendi gratia, ipſam regulam duplæ poſitionis, quod qui
<
lb
/>
dem problema aliter à me
<
reg
norm
="
ſolutum
"
type
="
context
">ſolutũ</
reg
>
fuit in .118. </
s
>
<
s
xml:id
="
echoid-s1359
"
xml:space
="
preserve
">Theoremate huius mei lib. quod ſimi
<
lb
/>
liter ob hanc demum occaſionem mihi oblatam, alia etiam via, ſpeculatus ſumidem
<
lb
/>
poſſe fieri, quæ quidem via ſeu methodus generalis erit, & ita ſe habet.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1360
"
xml:space
="
preserve
">Accipio enim propoſitum numerum diuiſibilem, à quo detraho ſummam
<
lb
/>
datorum numerorum, primo duplicato, eo quòd tam in ſecunda quam in
<
lb
/>
tertia parte reperitur, vt in propofito exemplo, datus numerus eft, 50. à
<
lb
/>
quo detraho ſummam dictorum numerorum, quæ eſt .11. nam tres, & tres, &
<
lb
/>
quinque ſunt vndecim, eo quòd primus ingreditur in ſecunda, & in tertia parte,
<
lb
/>
dempto igitur hoc numero .11. ex .50. remanet .39. qui quidem numerus intelligen-
<
lb
/>
dus eſt pro ſumma trium partium ſimplicium adhuc incognitarum, à quo extrahen
<
lb
/>
da eſt prima, eo modo quo nunc proponam exregula de tribus, hoc eſt aggregan
<
lb
/>
do dictas partes ſimplices ſine aliqua additione vtcunque volueris (ſed commodius
<
lb
/>
erit in minimis numeris) iuxta propoſitum, quod quidem propoſitum eſt, vt ſecun
<
lb
/>
da pars dupla ſit primæ, tertia verò æqualis fit primæ & ſecundæ, quæ partes in di-
<
lb
/>
ctis minimis numeris, ita diſpoſitæ erunt .1. 2. 3. quarum ſumma erit .6. </
s
>
<
s
xml:id
="
echoid-s1361
"
xml:space
="
preserve
">Nunc ſi ex
<
lb
/>
regula de tribus dixerimus, cum hæc ſumma proueniat nobis ab vno, à quo proue-
<
lb
/>
niet .39. et veniet nobis .6. cum dimidio pro prima parte quæfita in propoſito nume-
<
lb
/>
ro .39. cum ergo habuerimus primam
<
reg
norm
="
partem
"
type
="
context
">partẽ</
reg
>
, reliquas poſteà illicò cognoſcemus.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1362
"
xml:space
="
preserve
">Huiuſmodi verò operationis ratio ex ſe manifeſta patet, eo quòd proportio ſum
<
lb
/>
mæ partium in minimis numeris ad primam eorum partem eadem eſſe debet, quæ
<
lb
/>
ipſius .39. ad primam partem quæſitam huiuſmodi aggregati partium
<
reg
norm
="
ſimplicium
"
type
="
context
">ſimpliciũ</
reg
>
, ſed
<
lb
/>
quia nemo adhuc, quod ſciam, ſatis animaduertit rationem modorum, qui ab anti-
<
lb
/>
quis obſeruati ſunt, qui quidem modi duo ſunt circa hoc Helcataym duplæ falſæ
<
lb
/>
pofitionis, igitur non prætermittam aliquid de hacreſpeculari, & primo de pri-
<
lb
/>
mo modo.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1363
"
xml:space
="
preserve
">In primis igitur
<
reg
norm
="
ſciendum
"
type
="
context
">ſciendũ</
reg
>
eft,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
<
lb
/>
<
figure
xlink:label
="
fig-0117-01
"
xlink:href
="
fig-0117-01a
"
number
="
161
">
<
image
file
="
0117-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0117-01
"/>
<
caption
xml:id
="
echoid-caption1
"
xml:space
="
preserve
">Compositorum</
caption
>
</
figure
>
veritas ita inueniri poterit eo-
<
lb
/>
rum modo, me diantibus ſimpli
<
lb
/>
cibus partibus, vt
<
reg
norm
="
etiam
"
type
="
context
">etiã</
reg
>
<
reg
norm
="
median- tibus
"
type
="
simple
">median-
<
lb
/>
tibꝰ</
reg
>
<
reg
norm
="
compoſitis
"
type
="
context
">cõpoſitis</
reg
>
, ut in pręſenti
<
reg
norm
="
exem
"
type
="
context
">exẽ</
reg
>
<
lb
/>
plo pro primis pofitionibus ac-
<
lb
/>
ceperunt .10. et .8. pro ſecundis
<
lb
/>
verò compoſitis
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
numero .3.
<
lb
/>
<
reg
norm
="
inuenerunt
"
type
="
context
">inuenerũt</
reg
>
.23. et .19. pro tertijs
<
lb
/>
<
reg
norm
="
autem
"
type
="
wordlist
">aũt</
reg
>
<
reg
norm
="
compoſitis
"
type
="
context
">cõpoſitis</
reg
>
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
<
reg
norm
="
quinque
"
type
="
simple
">quinq;</
reg
>
, notaue
<
lb
/>
runt .38. et .32. vnde prima ſum
<
lb
/>
marefultauit .71. ſecunda verò
<
lb
/>
59. ita
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
<
reg
norm
="
primus
"
type
="
simple
">primꝰ</
reg
>
error remanebat
<
lb
/>
21.
<
reg
norm
="
ſecundus
"
type
="
context simple
">ſecũdꝰ</
reg
>
<
reg
norm
="
autem
"
type
="
wordlist
">aũt</
reg
>
.9. vt in figura
<
var
>.A</
var
>
.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>