Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(120)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div308
"
type
="
chapter
"
level
="
2
"
n
="
2
">
<
div
xml:id
="
echoid-div308
"
type
="
section
"
level
="
3
"
n
="
1
">
<
pb
o
="
120
"
rhead
="
IO. BAPT. BENED.
"
n
="
132
"
file
="
0132
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0132
"/>
<
p
>
<
s
xml:id
="
echoid-s1494
"
xml:space
="
preserve
">Pro cuius rei ſpeculatione imaginemur in figura corporea .A:
<
var
>q.a.</
var
>
eſſe figuram re-
<
lb
/>
ctangulam
<
reg
norm
="
orizontalemque
"
type
="
simple
">orizontalemq́;</
reg
>
ad degradandam ſuper aliquod planum perpendiculare
<
lb
/>
orizonti, & cum eo primum coniunctam in linea
<
var
>.q.d.</
var
>
cuius plani triangulum
<
var
>.i.q.d.</
var
>
<
lb
/>
pars erit, ſit autem oculus reſpicientis
<
var
>.o.</
var
>
cuius altitudo
<
var
>.o.p.</
var
>
ab orizonte, qui
<
reg
norm
="
quidem
"
type
="
context
">quidẽ</
reg
>
<
lb
/>
conſpicit rectangulum dictum orizontale
<
var
>.q.a.</
var
>
in pyramide
<
var
>.o.q</
var
>
:
<
var
>o.u</
var
>
:
<
var
>o.a.</
var
>
et
<
var
>.o.d.</
var
>
<
lb
/>
terminata quatuor triangulis
<
var
>.o.q.u</
var
>
:
<
var
>o.u.a</
var
>
:
<
var
>o.a.d.</
var
>
et
<
var
>.o.d.q.</
var
>
ſit verò primum ita
<
lb
/>
collocatus pes
<
var
>.p.</
var
>
eius qui reſpicit, vt linea
<
var
>.p.l.</
var
>
perpendicularis ipſi
<
var
>.u.a.</
var
>
lateri re-
<
lb
/>
ctanguli, medio loco poſita ſit, inter
<
var
>.a.n.</
var
>
et
<
var
>.u.s</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1495
"
xml:space
="
preserve
">
<
reg
norm
="
Idque
"
type
="
simple
">Idq́;</
reg
>
primum nobis erit exem-
<
lb
/>
plum.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1496
"
xml:space
="
preserve
">Imaginemur nunc lineas
<
var
>.u.q.</
var
>
et
<
var
>.a.d.</
var
>
indefinitè productas eſſe, quæ in ſuperficie-
<
lb
/>
bus duorum triangulorum
<
var
>.o.u.q.</
var
>
et
<
var
>.o.a.d.</
var
>
& rectanguli orizontalis
<
var
>.q.a.</
var
>
ex
<
ref
id
="
ref-0018
">prima
<
lb
/>
vndecimi Euclid.</
ref
>
poſitæ erunt. </
s
>
<
s
xml:id
="
echoid-s1497
"
xml:space
="
preserve
">Imaginemur etiam lineam
<
var
>.p.s.n.</
var
>
perpendicula-
<
lb
/>
rem ipſi
<
var
>.p.l.</
var
>
quæ etiam cum duabus
<
var
>.u.q.s.</
var
>
et
<
var
>.a.d.n.</
var
>
ex .34. primi Euclid. angulos
<
lb
/>
rectos conſtituet, cum ex .28. duæ
<
var
>.u.q.s.</
var
>
et
<
var
>.a.d.n.</
var
>
ſint parallelæ ipſi
<
var
>.p.l.</
var
>
et
<
var
>.s.n.</
var
>
ipſi
<
var
>.u.
<
lb
/>
a.</
var
>
& quia ſupponitur
<
var
>.o.p.</
var
>
perpendicularis plano orizontali, Angulus ergò
<
var
>.o.p.l.</
var
>
re-
<
lb
/>
ctus erit ex ſecunda definitione .11. Euclid. </
s
>
<
s
xml:id
="
echoid-s1498
"
xml:space
="
preserve
">Imaginemur quoque ductas eſſe
<
lb
/>
duas
<
var
>.o.s.</
var
>
et
<
var
>.o.n.</
var
>
vnde
<
var
>.l.p.</
var
>
ei ſuperficiei, in qua ſunt duæ lineæ
<
var
>.o.p.</
var
>
et
<
var
>.s.n.</
var
>
ex .4.
<
lb
/>
11. perpendicularis erit, & ſuperficies orizontalis
<
var
>.a.s.</
var
>
perpendicularis erit cum dicta
<
lb
/>
<
var
>o.s.n.</
var
>
ex .18. eiuſdem lib. vnde ex dicta definitione
<
var
>.o.s.u.</
var
>
et
<
var
>.o.n.a.</
var
>
erunt anguli recti
<
lb
/>
et
<
var
>.o.s.</
var
>
et
<
var
>.o.n.</
var
>
ex communi ſcientia, in ſuperficiebus duorum triangulorum
<
var
>.o.u.q.</
var
>
et
<
var
>.
<
lb
/>
o.a.d.</
var
>
erunt, ſi noluerimus cogere aduerſarium ad confitendum duas lineas rectas in-
<
lb
/>
cludere ſuperficiem, quemadmodum cogere-
<
lb
/>
<
figure
xlink:label
="
fig-0132-01
"
xlink:href
="
fig-0132-01a
"
number
="
179
">
<
image
file
="
0132-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0132-01
"/>
</
figure
>
tur facere, ſi opinaretur duas alias rectas per
<
lb
/>
eadem puncta
<
var
>.o.s.n.</
var
>
tranſire, quæſunt in di-
<
lb
/>
ctis ſuperficiebus. </
s
>
<
s
xml:id
="
echoid-s1499
"
xml:space
="
preserve
">Vnde
<
var
>.o.s.</
var
>
et
<
var
>.o.n.</
var
>
communes
<
lb
/>
erunt ſectiones duarum dictarum
<
reg
norm
="
ſuperficierum
"
type
="
context
">ſuperficierũ</
reg
>
<
lb
/>
cum ſuperficie
<
var
>.o.s.n</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1500
"
xml:space
="
preserve
">Imaginemur nunc has
<
lb
/>
duas ſuperficies
<
var
>.o.u.</
var
>
et
<
var
>.o.a.</
var
>
quarum commu-
<
lb
/>
nis ſectio ſit
<
var
>.o.t.</
var
>
(quæ erit linea recta ex .3. lib.
<
lb
/>
II.) quæ erunt perpendiculares ſuperficiei
<
var
>.o.s.
<
lb
/>
n.</
var
>
ex .4. et .14. iam dictis. </
s
>
<
s
xml:id
="
echoid-s1501
"
xml:space
="
preserve
">& ex .19. eiuſdem
<
lb
/>
<
var
>o.t.</
var
>
perpendicularis eidem ſuperficiei
<
var
>.o.s.n.</
var
>
<
lb
/>
erit, & ex .6. eiuſdem hæc linea
<
var
>.o.t.</
var
>
duabus
<
var
>.u.
<
lb
/>
q.s.</
var
>
et
<
var
>.a.d.n.</
var
>
parallela exiſter, & ex .9. eiuſdem
<
lb
/>
hæc linea
<
var
>.o.t.</
var
>
duabus
<
var
>.u.q.s.</
var
>
et
<
var
>.a.d.n.</
var
>
parallela
<
lb
/>
exiſtet, & ex eadem .9. erit parallela ipſi
<
var
>.p.l.</
var
>
<
lb
/>
Imaginemur nunc planum, ſuper quod deſide
<
lb
/>
remus videre quadrangulum orizontale, quod
<
lb
/>
planum, exempli gratia, ſit primo, vt iam dixi-
<
lb
/>
mus, locatum in linea
<
var
>.q.d.</
var
>
ad angulos rectos
<
lb
/>
cum plano orizontali, cuius communes ſectio
<
lb
/>
nes cum ſuperficiebus
<
var
>.s.t.</
var
>
et
<
var
>.n.t.</
var
>
viſionis la-
<
lb
/>
terum
<
var
>.u.q.</
var
>
et
<
var
>.a.d.</
var
>
ſint
<
var
>.i.q.</
var
>
et
<
var
>.i.d.</
var
>
& com-
<
lb
/>
munis ſectio trianguli
<
var
>.o.u.a.</
var
>
ideſt viſionis
<
lb
/>
lateris
<
var
>.a.u.</
var
>
cum dicto plano, ſit
<
var
>.r.e</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1502
"
xml:space
="
preserve
">Vnde ex
<
lb
/>
communi ſcientia rectangulum orizontale,
<
lb
/>
oculo
<
var
>.o.</
var
>
ſeipſum patefaciet in plano
<
var
>.i.q.d.</
var
>
ſe- </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>