Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(149)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div340
"
type
="
chapter
"
level
="
2
"
n
="
3
">
<
div
xml:id
="
echoid-div352
"
type
="
section
"
level
="
3
"
n
="
7
">
<
p
>
<
s
xml:id
="
echoid-s1783
"
xml:space
="
preserve
">
<
pb
o
="
149
"
rhead
="
DE MECHAN.
"
n
="
161
"
file
="
0161
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0161
"/>
proportio
<
reg
norm
="
ponderis
"
type
="
context
">põderis</
reg
>
<
var
>.a.</
var
>
ad pon
<
lb
/>
dusipſius
<
var
>.b.</
var
>
eadem ſit cum
<
lb
/>
ea quę eſt
<
var
>.o.t.</
var
>
ad
<
var
>.o.e.</
var
>
ſub co
<
lb
/>
<
reg
norm
="
gnitionem
"
type
="
context
">gnitionẽ</
reg
>
noſtram cadere po
<
lb
/>
teſt, primum cognoſcendo
<
lb
/>
angulos obliquitatis librę,
<
lb
/>
ideſt angulos
<
var
>.b.o.u.</
var
>
et
<
var
>.a.o.
<
lb
/>
u.</
var
>
quia oportet ſemper ſup-
<
lb
/>
<
figure
xlink:label
="
fig-0161-01
"
xlink:href
="
fig-0161-01a
"
number
="
218
">
<
image
file
="
0161-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0161-01
"/>
</
figure
>
ponere ſitum aliquem no-
<
lb
/>
tum. </
s
>
<
s
xml:id
="
echoid-s1784
"
xml:space
="
preserve
">Si nobis deinde co-
<
lb
/>
gnita erit proportio ipſius
<
var
>.
<
lb
/>
o.u.</
var
>
ad
<
var
>.o.b.</
var
>
et. ad
<
var
>.o.a.</
var
>
aſſe-
<
lb
/>
quemur cognitionem angu
<
lb
/>
li
<
var
>.b.</
var
>
et
<
var
>.o.a.u.</
var
>
& per conſe-
<
lb
/>
quens ipſius
<
var
>.o.a.t.</
var
>
eius reſi-
<
lb
/>
dui, vnde poſtea beneficio
<
lb
/>
angulorum
<
var
>.e.</
var
>
et
<
var
>.t.</
var
>
rectorum
<
lb
/>
& laterum
<
var
>.o.b.</
var
>
et
<
var
>.o.a.</
var
>
cogni
<
lb
/>
torum in cognitionem
<
var
>.o.t.</
var
>
<
lb
/>
et
<
var
>.o.e.</
var
>
facile deueniemus.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div354
"
type
="
section
"
level
="
3
"
n
="
8
">
<
head
xml:id
="
echoid-head209
"
xml:space
="
preserve
">CAP. VIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1785
"
xml:space
="
preserve
">QVod autem idem Tartalea in .6. propoſitione, & Iordanus in ſecunda parte.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1786
"
xml:space
="
preserve
">ſecundæ propoſitionis ſcribunt, maximum quoque errorem inſe continet.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1787
"
xml:space
="
preserve
">Dicunt enim
<
reg
norm
="
angulum
"
type
="
context
">angulũ</
reg
>
<
lb
/>
<
var
>h.a.f.</
var
>
differentem ab
<
lb
/>
angulo
<
var
>.d.b.f.</
var
>
alia ra-
<
lb
/>
tione non eſſe quàm
<
lb
/>
per angulum conta-
<
lb
/>
ctus
<
reg
norm
="
duorum
"
type
="
context
">duorũ</
reg
>
<
reg
norm
="
circulorum
"
type
="
context
">circulorũ</
reg
>
,
<
lb
/>
vt in ſua figura ſcribit
<
lb
/>
Tartalea; </
s
>
<
s
xml:id
="
echoid-s1788
"
xml:space
="
preserve
">id quod fal-
<
lb
/>
ſiſſimum eſt. </
s
>
<
s
xml:id
="
echoid-s1789
"
xml:space
="
preserve
">
<
reg
norm
="
Quam
"
type
="
context
">Quã</
reg
>
ob
<
lb
/>
cauſam in ſubſcripta
<
lb
/>
figura ſit libra
<
var
>.B.A.</
var
>
<
lb
/>
<
figure
xlink:label
="
fig-0161-02
"
xlink:href
="
fig-0161-02a
"
number
="
219
">
<
image
file
="
0161-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0161-02
"/>
</
figure
>
& eius centrum. </
s
>
<
s
xml:id
="
echoid-s1790
"
xml:space
="
preserve
">C et
<
var
>.
<
lb
/>
u.</
var
>
<
reg
norm
="
centrum
"
type
="
context
">centrũ</
reg
>
regionis ele
<
lb
/>
mentaris, et
<
var
>.A.u.</
var
>
et
<
var
>.B.
<
lb
/>
u.</
var
>
lineæ
<
reg
norm
="
inclinationum
"
type
="
context
">inclinationũ</
reg
>
.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1791
"
xml:space
="
preserve
">Imaginemur deinde
<
lb
/>
lineam
<
var
>.B.K.</
var
>
<
reg
norm
="
parallelam
"
type
="
context
">parallelã</
reg
>
<
lb
/>
ipſi
<
var
>.A.u.</
var
>
quæ gyrum
<
var
>.
<
lb
/>
B.F.A.</
var
>
in puncto
<
var
>.K.</
var
>
<
lb
/>
communi ſcientiæ
<
reg
norm
="
prae cepto
"
type
="
simple
">prę
<
lb
/>
cepto</
reg
>
ſcindet, & habe
<
lb
/>
bimus angulum
<
var
>.K.B.
<
lb
/>
Z.</
var
>
æqualem angulo
<
var
>.
<
lb
/>
H.A.F.</
var
>
ideſt
<
var
>.u.A.F.</
var
>
<
lb
/>
(quia
<
var
>.H.u.</
var
>
et
<
var
>.D.</
var
>
<
reg
norm
="
unum
"
type
="
context
">unũ</
reg
>
<
lb
/>
ſunt) cum ex .29. libr.
<
lb
/>
primi Euclidis angu- </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>