Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(172)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div387
"
type
="
chapter
"
level
="
2
"
n
="
4
">
<
div
xml:id
="
echoid-div394
"
type
="
section
"
level
="
3
"
n
="
5
">
<
pb
o
="
172
"
rhead
="
IO. BAPT. BENED.
"
n
="
184
"
file
="
0184
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0184
"/>
</
div
>
<
div
xml:id
="
echoid-div396
"
type
="
section
"
level
="
3
"
n
="
6
">
<
head
xml:id
="
echoid-head253
"
style
="
it
"
xml:space
="
preserve
">Quod proportiones ponderum eiuſdem corporis in diuerſis medijs pro
<
lb
/>
portiones eorum mediorum denſit atum non ſeruant. Unde ne-
<
lb
/>
ceßariò inæquales proportiones uelocitatum
<
lb
/>
producuntur.</
head
>
<
head
xml:id
="
echoid-head254
"
xml:space
="
preserve
">CAP. VI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2050
"
xml:space
="
preserve
">OMne corpus graue variat proportionem ponderis per diuerſa media, vnde
<
lb
/>
proportiones velocitatum inæquales exiſtunt. </
s
>
<
s
xml:id
="
echoid-s2051
"
xml:space
="
preserve
">Vt exempli gratia, ſi fue-
<
lb
/>
rit corpus
<
var
>.A.</
var
>
cuius pondus totale ſit
<
var
>.o.a.</
var
>
quod in aqua diminutum ſit ratione partis
<
var
>.
<
lb
/>
e.o.</
var
>
ita vt ei ſolum relinquatur pondus
<
var
>.a.e.</
var
>
& in aeie adempta ſit ei pars
<
var
>.i.o.</
var
>
vnde ſo
<
lb
/>
lum remaneat pondus
<
var
>.a.i</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2052
"
xml:space
="
preserve
">Supponamus aliud
<
reg
norm
="
quoque
"
type
="
simple
">quoq;</
reg
>
medium in eadem proportio-
<
lb
/>
ne minus denſum, quàm aer, quemadmodum aer minus denſus eſt, aqua, in quo, cor
<
lb
/>
pus
<
var
>.A.</
var
>
ammittat partem
<
var
>.t.o.</
var
>
ponderis ſui, vnde ex .7. lib. de inſidentibus aquæ Ar-
<
lb
/>
chimedis, eadem proportio erit
<
var
>.e.o.</
var
>
ad
<
var
>.i.o.</
var
>
quæ eſt
<
var
>.i.o.</
var
>
ad
<
var
>.t.o</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2053
"
xml:space
="
preserve
">Supponamus
<
reg
norm
="
quoque
"
type
="
simple
">quoq;</
reg
>
<
lb
/>
eandem proportionem eſſe
<
var
>.a.i.</
var
>
ad
<
var
>.a.e.</
var
>
eſt
<
var
>.e.o.</
var
>
ad
<
var
>.i.o.</
var
>
</
s
>
<
s
xml:id
="
echoid-s2054
"
xml:space
="
preserve
">tunc dico non futuram ean-
<
lb
/>
dem proportionem
<
var
>.t.a.</
var
>
ad
<
var
>.a.i.</
var
>
quæ eſt
<
var
>.i.o.</
var
>
ad
<
var
>.t.o</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2055
"
xml:space
="
preserve
">Cum ſit ergo proportio
<
var
>.a.i.</
var
>
<
lb
/>
ad
<
var
>.a.e.</
var
>
ut
<
var
>.e.o.</
var
>
ad
<
var
>.i.o.</
var
>
erit diſiunctim
<
var
>.e.i.</
var
>
ad
<
var
>.e.a.</
var
>
vt
<
var
>.e.i.</
var
>
ad
<
var
>.i.o</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2056
"
xml:space
="
preserve
">Quare ex .9. libr. quin
<
lb
/>
ti erit
<
var
>.a.e.</
var
>
æqualis
<
var
>.i.o.</
var
>
ſed cum ita ſehabeat
<
var
>.e.o.</
var
>
ad
<
var
>.i.o.</
var
>
vt
<
var
>.i.o.</
var
>
ad
<
var
>.t.o.</
var
>
ita quoque
<
lb
/>
ſe habebit, ex vndecima quinti
<
var
>.a.i.</
var
>
ad
<
var
>.e.a.</
var
>
ut
<
var
>.i.o.</
var
>
ad
<
var
>.t.o</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2057
"
xml:space
="
preserve
">Cum autem (vt vidimus).
<
var
>a.e.</
var
>
<
lb
/>
ęqualis ſit ipſi
<
var
>.i.o.</
var
>
non poterit eſſe proportio
<
var
>.t.a.</
var
>
ad
<
var
>.i.a.</
var
>
vt eſt
<
var
>.o.i.</
var
>
ad
<
var
>.t.o.</
var
>
quia ſi
<
lb
/>
hoc eſſet, eſſet etiam diſiunctim proportio
<
var
>.i.t.</
var
>
ad
<
var
>.i.a.</
var
>
vt eſt
<
var
>.i.t.</
var
>
ad
<
var
>.t.o.</
var
>
& ex ſupradicta
<
lb
/>
9. lib. quinti
<
var
>.a.i.</
var
>
æqualis eſſet
<
var
>.t.o</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2058
"
xml:space
="
preserve
">Maximum autem inconueniens eſſet
<
var
>.t.o.</
var
>
minorem
<
lb
/>
<
var
>o.i.</
var
>
ideſt minorem
<
var
>.a.e.</
var
>
æqualem eſſe
<
var
>.a.i.</
var
>
quæ maior eſt
<
var
>.a.e</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2059
"
xml:space
="
preserve
">Oſtenſiuè tamen idem
<
lb
/>
hoc modo probari poteſt, vt exiſtente
<
var
>.i.o.</
var
>
ęquali ipſi
<
var
>.a.e.</
var
>
per conſequens
<
reg
norm
="
quoque
"
type
="
simple
">quoq;</
reg
>
erit
<
lb
/>
minor ipſa
<
var
>.a.i.</
var
>
cum
<
var
>.a.e.</
var
>
pars ſit ipſius
<
var
>a.i</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2060
"
xml:space
="
preserve
">
<
reg
norm
="
Pereandem
"
type
="
context
">Pereãdem</
reg
>
tamen rationem
<
var
>.o.t.</
var
>
minoreſt
<
var
>.
<
lb
/>
o.i</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2061
"
xml:space
="
preserve
">Tanto magis igitur minor erit
<
var
>.t.o.</
var
>
ipſa
<
var
>.i.a</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2062
"
xml:space
="
preserve
">Vnde ex .8. libri quinti maiorem pro
<
lb
/>
portionem habebit
<
var
>.i.t.</
var
>
<
lb
/>
ad
<
var
>.t.o.</
var
>
quam ad
<
var
>.i.a.</
var
>
&
<
lb
/>
ex .28.
<
reg
norm
="
eiuſdem
"
type
="
context
">eiuſdẽ</
reg
>
lib
<
var
>.i.o.</
var
>
ad
<
lb
/>
<
var
>t.o.</
var
>
<
reg
norm
="
maiorem
"
type
="
context
">maiorẽ</
reg
>
proportio-
<
lb
/>
<
figure
xlink:label
="
fig-0184-01
"
xlink:href
="
fig-0184-01a
"
number
="
247
">
<
image
file
="
0184-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0184-01
"/>
</
figure
>
<
reg
norm
="
nem
"
type
="
context
">nẽ</
reg
>
habebit, quàm.t.a.
<
lb
/>
ad
<
var
>.i.a.</
var
>
ex .12. igitur di-
<
lb
/>
cti quinti maiorem pro
<
lb
/>
portionem habebit
<
var
>.i.a.</
var
>
ad
<
var
>.e.a.</
var
>
quàm.t.a. ad
<
var
>.i.a.</
var
>
ita ergo ſe habebunt ipſorum velo-
<
lb
/>
citates.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div398
"
type
="
section
"
level
="
3
"
n
="
7
">
<
head
xml:id
="
echoid-head255
"
style
="
it
"
xml:space
="
preserve
">Corpora grauia aut leuia eiuſdem figur æ et materiæ ſed inæqualis
<
lb
/>
magnitudinis, in ſuis motibus natur alibus uelocit atis, in eo
<
lb
/>
dem medio, proportionem longè diuerſam ſeruatura
<
lb
/>
eße quam Aristoteliuiſum fuerit.</
head
>
<
head
xml:id
="
echoid-head256
"
xml:space
="
preserve
">CAP. VII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2063
"
xml:space
="
preserve
">ESt mihi nunc probandum
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
in uno
<
reg
norm
="
eodemque
"
type
="
simple
">eodemq́;</
reg
>
mcdio duo corpora inæqualia, ſed
<
lb
/>
ſimili figura & materia, mouebuntur naturali motu, diuerſa tamen ratione ab </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>