Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(203)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div441
"
type
="
chapter
"
level
="
2
"
n
="
5
">
<
div
xml:id
="
echoid-div454
"
type
="
section
"
level
="
3
"
n
="
2
">
<
div
xml:id
="
echoid-div469
"
type
="
section
"
level
="
4
"
n
="
10
">
<
p
>
<
s
xml:id
="
echoid-s2474
"
xml:space
="
preserve
">
<
pb
o
="
203
"
rhead
="
IN QVINT. LIB. EVCLI.
"
n
="
215
"
file
="
0215
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0215
"/>
portio
<
var
>.a.</
var
>
ad
<
var
>.b.</
var
>
quæ eſt
<
var
>.c.</
var
>
ad
<
var
>.d.</
var
>
probabo ita ſe habituram proportionem
<
var
>.b.</
var
>
ad
<
var
>.a.</
var
>
ſicut
<
lb
/>
ſe habet
<
var
>.d.</
var
>
ad
<
var
>.c.</
var
>
hoc argumento: </
s
>
<
s
xml:id
="
echoid-s2475
"
xml:space
="
preserve
">ſi
<
var
>.a.</
var
>
ad
<
var
>.b.</
var
>
ita ſe
<
lb
/>
habet ſicut
<
var
>.c.</
var
>
ad
<
var
>.d.</
var
>
ex .16. theoremate ita ſe ha
<
lb
/>
<
figure
xlink:label
="
fig-0215-01
"
xlink:href
="
fig-0215-01a
"
number
="
268
">
<
image
file
="
0215-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0215-01
"/>
</
figure
>
bebit
<
var
>.a.</
var
>
ad
<
var
>.c</
var
>
, ſicut
<
var
>.b.</
var
>
ad
<
var
>.d</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2476
"
xml:space
="
preserve
">Quare ſic ſe habebit
<
lb
/>
b. ad
<
var
>.d.</
var
>
ſicut
<
var
>.a.</
var
>
ad
<
var
>.c</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2477
"
xml:space
="
preserve
">Itaque ex eodem .16. ita ſe
<
lb
/>
ſe habebit
<
var
>.b.</
var
>
ad
<
var
>.a.</
var
>
ſicut
<
var
>.d.</
var
>
ad
<
var
>.c</
var
>
.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div471
"
type
="
section
"
level
="
4
"
n
="
11
">
<
head
xml:id
="
echoid-head351
"
xml:space
="
preserve
">THEOREM. XX.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2478
"
xml:space
="
preserve
">QVamuis .20. theorema apud Eucli. perfectè demonſtratum fuerit, poteſt ni-
<
lb
/>
hilominus & hac via demonſtrari. </
s
>
<
s
xml:id
="
echoid-s2479
"
xml:space
="
preserve
">Sic ſe habeat proportio
<
var
>.a.</
var
>
ad
<
var
>.b.</
var
>
ſicut ſe
<
lb
/>
habet
<
var
>.c.</
var
>
ad
<
var
>.d.</
var
>
& proportio
<
var
>.b.</
var
>
ad
<
var
>.e.</
var
>
ſicut
<
var
>.d.</
var
>
ad
<
var
>.
<
lb
/>
f</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2480
"
xml:space
="
preserve
">Dico
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
ſi
<
var
>.a.</
var
>
maius fuerit
<
var
>.e.</
var
>
pariter
<
var
>.c.</
var
>
maius
<
lb
/>
<
figure
xlink:label
="
fig-0215-02
"
xlink:href
="
fig-0215-02a
"
number
="
269
">
<
image
file
="
0215-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0215-02
"/>
</
figure
>
erit
<
var
>.f.</
var
>
& ſi
<
var
>.a.</
var
>
minus fuerit .e: c.
<
reg
norm
="
quoque
"
type
="
simple
">quoq;</
reg
>
minus erit
<
lb
/>
f. ſin verò ęquale,
<
reg
norm
="
ent
"
type
="
context
">ẽt</
reg
>
æquale erit. </
s
>
<
s
xml:id
="
echoid-s2481
"
xml:space
="
preserve
">Nam ex pri
<
lb
/>
mo poſtulato certi ſumus ita ſe habere pro
<
lb
/>
<
reg
norm
="
portionem
"
type
="
context
">portionẽ</
reg
>
<
var
>.a.</
var
>
ad
<
var
>.e.</
var
>
ſicut ſe habet proportio
<
var
>.c.</
var
>
ad
<
lb
/>
p. </
s
>
<
s
xml:id
="
echoid-s2482
"
xml:space
="
preserve
">Quare ex .12. theor
<
reg
norm
="
propoſitum
"
type
="
simple context
">ꝓpoſitũ</
reg
>
<
reg
norm
="
manifeſtum
"
type
="
context
">manifeſtũ</
reg
>
erit.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div473
"
type
="
section
"
level
="
4
"
n
="
12
">
<
head
xml:id
="
echoid-head352
"
xml:space
="
preserve
">THEOREM. XXI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2483
"
xml:space
="
preserve
">VIgeſimum primum theorema, ſatis apud Eucli. probatum, nihilominus præ-
<
lb
/>
ſcripto nunc modo demonſtrari poterit.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div474
"
type
="
section
"
level
="
4
"
n
="
13
">
<
head
xml:id
="
echoid-head353
"
xml:space
="
preserve
">THEOREM. XXII. XXIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2484
"
xml:space
="
preserve
">DVO hæc theoremata in primum poſtulatum collegimus.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2485
"
xml:space
="
preserve
">Sequentia verò cum exactè apud Eucli. demonſtrentur non eſt cur nos in
<
lb
/>
ijs immoremur.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>