Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(249)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div495
"
type
="
section
"
level
="
3
"
n
="
5
">
<
div
xml:id
="
echoid-div500
"
type
="
letter
"
level
="
4
"
n
="
2
">
<
pb
o
="
249
"
rhead
="
EPISTOLAE.
"
n
="
261
"
file
="
0261
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0261
"/>
<
p
>
<
s
xml:id
="
echoid-s3139
"
xml:space
="
preserve
">Verum nolo te in ea, quæfalſa eſt, opinione conſiſtere, nonidem, & cum octona-
<
lb
/>
rio, ſenario, vel quinario, aut quouis alio numero poſſe efficere, cum eademmet ra
<
lb
/>
tio, quæ in ſeptenario, aut nouenario,
<
reg
norm
="
ent
"
type
="
context
">ẽt</
reg
>
in cæteris perhibeatur. </
s
>
<
s
xml:id
="
echoid-s3140
"
xml:space
="
preserve
">Ponamus
<
reg
norm
="
exemplum
"
type
="
context
">exemplũ</
reg
>
<
lb
/>
hos tres or dinum numeros velle ſupputare, quorum primus ſit .679. ſecundus .846.
<
lb
/>
& tertius .935. & illorum
<
reg
norm
="
ſummam
"
type
="
context
">ſummã</
reg
>
.2460. nunc maiorem numerum primi ordinis ab
<
lb
/>
octonario menſi, proijciendo, remanebit .7. deinde maiorem numerum demendo à
<
lb
/>
ſecundo or dine, reſiduum erit .6. ac ſi idem in tertio ordine fecerimus, erit nobis re-
<
lb
/>
liquum .7. </
s
>
<
s
xml:id
="
echoid-s3141
"
xml:space
="
preserve
">Demum tria hæc reſidua in vnum collecta .20. efficient, à quibus ſi nume
<
lb
/>
rum maiorem ab octonario menſum dempſeris, ſupererunt .4. & totidem à ſumma
<
num
value
="
2460
">.
<
lb
/>
2460.</
num
>
remanebunt, reiecto maiori numero ab octonario menſo. </
s
>
<
s
xml:id
="
echoid-s3142
"
xml:space
="
preserve
">Atque idem me-
<
lb
/>
dio quouis alio numero, euenire poteſt.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3143
"
xml:space
="
preserve
">Cuius ratio tam perſe clara atque euidens eſt, quod ſi ſummam trium
<
reg
norm
="
reliquorum
"
type
="
context
">reliquorũ</
reg
>
,
<
lb
/>
quæ eſt .20. à ſumma .2460. ſubduxeris, remanebunt .2440. pro ſumma trium nume
<
lb
/>
rorum dictorum trium ordinum ab octonario menſorum, cui numero addito .16. pro
<
lb
/>
maiori numero ſummę
<
reg
norm
="
reliquorum
"
type
="
context
">reliquorũ</
reg
>
, qui ab octonario menſus ſit, ſupererunt .4. </
s
>
<
s
xml:id
="
echoid-s3144
"
xml:space
="
preserve
">At ſi per
<
lb
/>
<
reg
norm
="
ſenarium
"
type
="
context
">ſenariũ</
reg
>
<
reg
norm
="
experimentum
"
type
="
context context
">experimẽtũ</
reg
>
feceris, remanebit
<
var
>.o.</
var
>
& ſic de reliquis per ordinem
<
reg
norm
="
procedendo
"
type
="
context
">procedẽdo</
reg
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3145
"
xml:space
="
preserve
">Verum poſſes ſciſcitari, quare velocius, exceſſus ordinum, potius per
<
reg
norm
="
noue- narium
"
type
="
context
">noue-
<
lb
/>
nariũ</
reg
>
, quam per cæteros numeros, prout
<
reg
norm
="
docent
"
type
="
context
">docẽt</
reg
>
practici, inueniri queat, videlicet ag
<
lb
/>
gregando prius duas figuras numerorum primæ ſummæ, deinde alias duas. </
s
>
<
s
xml:id
="
echoid-s3146
"
xml:space
="
preserve
">Exem-
<
lb
/>
plum ſit primus ordo .679. colligendo .6. et .7. faciunt 13. & cum hæc ſumma ſit dua
<
lb
/>
rum figurarum, ſupputantur & ipſæ, è quibus prodeunt .4. & conſimilis erit proba-
<
lb
/>
tio numeri .67. facta per .9. quod idem eſt, ac ſi quis diuidat .67. per .9. ex quo reli-
<
lb
/>
qui erunt ſemper .4.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3147
"
xml:space
="
preserve
">At quo ratio huiuſce perſpicuè dignoſci poſſit, in primis ſciendum eſt, cuique
<
lb
/>
ex ſe cognitum, atque exploratum eſſe, denarium numerum vnitate nouenarium ſu
<
lb
/>
perare, & ex hoc ſequitur, ſex denarios continere in ſe ſex nouenarios, & ſex vni-
<
lb
/>
tates.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3148
"
xml:space
="
preserve
">At ſex vnitates, vna cum .7. faciunt .13. & quia in .13. eſt denarius, igitur in illo erit
<
lb
/>
vnitas ſupra .9. </
s
>
<
s
xml:id
="
echoid-s3149
"
xml:space
="
preserve
">Quæ vnitas addita ternario, præbet nobis ſuperfluum, per quod .67.
<
lb
/>
ſuperat .54. iunctum cum .9. ſcilicet ſummam .63.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3150
"
xml:space
="
preserve
">Idem dicinon poteſt de octonario, ſeptenario, vel ſenario, & de reliquis, quo-
<
lb
/>
niam numerus denariorum, in cæteris minoribus nouenario non præbet illico nu-
<
lb
/>
merum exceſſus maioris numeri, qui à numero probationis menſus eſt. </
s
>
<
s
xml:id
="
echoid-s3151
"
xml:space
="
preserve
">Et quod di
<
lb
/>
co de probatione aggregationis, idem intelligo de alijs operationibus, vt puta ſub-
<
lb
/>
tractionis, multiplicationis, & partitionis ſeu diuiſionis.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3152
"
xml:space
="
preserve
">Vnde autem oriatur, vt in partitionis probatione opus ſit probationem euentus
<
lb
/>
cum diuiſionis probatione multiplicare, & productum cum fractionis probatione
<
lb
/>
ſupputare, ſeu aggregare, tibi non erit ignotum, quoties animaduerteris, quod
<
lb
/>
productum ipſius euentus cum diuiſore, adiunctum fractioni, perpetuo ſe æquat nu
<
lb
/>
mero diuiſibili. </
s
>
<
s
xml:id
="
echoid-s3153
"
xml:space
="
preserve
">Et quoniam numeri probationum ſunt partes, quæ remanent ex
<
lb
/>
ipſis totis, detractis maioribus numeris ab eo dimenſis, quo pro communi men-
<
lb
/>
ſura vtimur (prout .7. vel .9. aut alium numerum, quem voluerimus) par eſt vt ex ip-
<
lb
/>
ſarum remanentibus partibus, velut ex ipſis totis idem fiat.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>