Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(263)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div518
"
type
="
section
"
level
="
3
"
n
="
8
">
<
div
xml:id
="
echoid-div518
"
type
="
letter
"
level
="
4
"
n
="
1
">
<
pb
o
="
263
"
rhead
="
EPISTOL AE.
"
n
="
275
"
file
="
0275
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0275
"/>
<
p
>
<
s
xml:id
="
echoid-s3295
"
xml:space
="
preserve
">Sed ſi circuli propoſiti ſeiuncti fuerint, ſumatur
<
var
>.b.i.</
var
>
diameter maioris, qui fiat ſe-
<
lb
/>
midiameter vnius circuli circa centrum
<
var
>.o.</
var
>
& hic circulus vocetur
<
var
>.h.x.</
var
>
coniunga-
<
lb
/>
tur deinde ſemidiameter
<
var
>.o.i.</
var
>
minoris circuli cum ſemidiametro
<
var
>.a.i.</
var
>
circuli maio-
<
lb
/>
ris, & ex huiuſmodi compoſita linea, fiat vnus ſemidiameter
<
var
>.a.x.</
var
>
circuli
<
var
>.x.n.</
var
>
concen
<
lb
/>
trici cum maiori, & à puncto
<
var
>.x.</
var
>
interſectionis horum circulorum (poſito quod ſe in-
<
lb
/>
uicem interſecent) ducantur per eorum centra
<
var
>.x.a.</
var
>
et
<
var
>.x.o.</
var
>
vſque ad ipſorum circun-
<
lb
/>
ferentias in punctis
<
var
>.d.</
var
>
et
<
var
>.f.</
var
>
duę
<
lb
/>
lineæ, vnde habebimus
<
var
>.x.d.</
var
>
<
lb
/>
æqualem
<
var
>.x.f.</
var
>
eo quod tam in
<
lb
/>
<
figure
xlink:label
="
fig-0275-01
"
xlink:href
="
fig-0275-01a
"
number
="
304
">
<
image
file
="
0275-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0275-01
"/>
</
figure
>
<
var
>x.d.</
var
>
quam in
<
var
>.x.f.</
var
>
reperiuntur
<
lb
/>
diametri, & ſemidiametri am-
<
lb
/>
borum circulorum, facto deni
<
lb
/>
que centro
<
var
>.x.</
var
>
vnius circuli, cu
<
lb
/>
ius ſemidiameter ęqualis ſit
<
lb
/>
vni earum
<
var
>.x.d.</
var
>
vel
<
var
>.x.f.</
var
>
folu-
<
lb
/>
tum erit problema, dicta ra-
<
lb
/>
tione.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3296
"
xml:space
="
preserve
">Si verò diſtantia duorum
<
lb
/>
propoſitorum circulorum tanta fuerit, quod ſecundi circuli nequeant ſe inuicem
<
lb
/>
tangere, vel ſecare, tunc alia via incedendum erit, quę talis eſt & generalis. </
s
>
<
s
xml:id
="
echoid-s3297
"
xml:space
="
preserve
">Diuida-
<
lb
/>
tur tota
<
var
>.q.b.</
var
>
per æqualia in puncto
<
var
>.z.</
var
>
circa quod
<
reg
norm
="
ſignentur
"
type
="
context
">ſignẽtur</
reg
>
duo puncta ab ipſo ęquidi
<
lb
/>
ſtantia
<
var
>.K.</
var
>
et
<
var
>.p.</
var
>
diſtantia vero
<
var
>.a.K.</
var
>
facta ſit ſemidiameter eſſe vnius circuli
<
var
>.K.x.</
var
>
circa
<
lb
/>
centrum
<
var
>.a.</
var
>
diſtantia autem
<
var
>.o.p.</
var
>
ſemidiameter alterius circuli
<
var
>.p.x.</
var
>
circa cen-
<
lb
/>
trum
<
var
>.o.</
var
>
qui quidem circuli ſe inuicem ſecent in puncto
<
var
>.x.</
var
>
à quo cum ductę fue-
<
lb
/>
rinc
<
var
>.x.a.d.</
var
>
et
<
var
>.x.o.f.</
var
>
per centra dictorum circulorum, ipſe erunt
<
reg
norm
="
inuicem
"
type
="
context
">inuicẽ</
reg
>
ęquales, eo
<
reg
norm
="
quod
"
type
="
wordlist
">qđ</
reg
>
<
lb
/>
cum
<
var
>.b.K.</
var
>
æqualis ſit
<
var
>.q.p.</
var
>
igitur
<
var
>.x.d.</
var
>
et
<
var
>.q.p.</
var
>
erunt inuicem ęquales, ſed
<
var
>.f.x.</
var
>
æqualis eſt
<
lb
/>
<
var
>q.p</
var
>
. </
s
>
<
s
xml:id
="
echoid-s3298
"
xml:space
="
preserve
">quare
<
var
>.x.f.</
var
>
æqualis erit
<
var
>.x.d.</
var
>
tunc ſi
<
var
>.x.</
var
>
centrum fuerit vnius circuli, cuius ſemidia-
<
lb
/>
mer ſit vna dictarum, problema ſolutum erit.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3299
"
xml:space
="
preserve
">Talis etiam ſoiutio commo-
<
lb
/>
da erit ad inueniendum dictum
<
lb
/>
<
figure
xlink:label
="
fig-0275-02
"
xlink:href
="
fig-0275-02a
"
number
="
305
">
<
image
file
="
0275-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0275-02
"/>
</
figure
>
circulum cuiuſuis magnitudinis,
<
lb
/>
dato tamen
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
eius diameter, ma
<
lb
/>
ior ſit
<
var
>.b.z.</
var
>
cum in noſtra poteſta
<
lb
/>
te ſit accipere puncta
<
var
>.K.</
var
>
et
<
var
>.p.</
var
>
pro
<
lb
/>
xima vel remota ab ipſo
<
var
>.z.</
var
>
ad li-
<
lb
/>
bitum. </
s
>
<
s
xml:id
="
echoid-s3300
"
xml:space
="
preserve
">Vnde abſque vlla diuiſio
<
lb
/>
neipſius
<
var
>.q.b.</
var
>
per medium, ſatis
<
lb
/>
erit ſignare puncta
<
var
>.K.</
var
>
et
<
var
>.p.</
var
>
dua-
<
lb
/>
bus diſtantijs mediantibus
<
var
>.b.K.</
var
>
<
lb
/>
et
<
var
>.q.p.</
var
>
inuicem æqualibus, &
<
lb
/>
etiam propoſitis.</
s
>
</
p
>
<
handwritten
number
="
19
"/>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>