Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(16)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div7
"
type
="
chapter
"
level
="
2
"
n
="
1
">
<
div
xml:id
="
echoid-div52
"
type
="
math:theorem
"
level
="
3
"
n
="
23
">
<
p
>
<
s
xml:id
="
echoid-s231
"
xml:space
="
preserve
">
<
pb
o
="
16
"
rhead
="
IO. BAPT. BENED.
"
n
="
28
"
file
="
0028
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0028
"/>
tas vero cui
<
reg
norm
="
differentiam
"
type
="
context
">differentiã</
reg
>
<
var
>.n.c.</
var
>
æquari dico, ſit
<
var
>.a.i</
var
>
. </
s
>
<
s
xml:id
="
echoid-s232
"
xml:space
="
preserve
">Patet enim in primis, eandem propor
<
lb
/>
tionem eſſe
<
var
>.a.e.</
var
>
ad
<
var
>.a.c.</
var
>
quæ eſt
<
var
>.u.e.</
var
>
ad
<
var
>.a.i.</
var
>
ex definitione diuiſionis, et eandem
<
lb
/>
eſſe
<
var
>.a.u.</
var
>
ad
<
var
>.a.n.</
var
>
quæ eſt
<
var
>.u.e.</
var
>
ad
<
var
>.a.i.</
var
>
vnde ex .
<
lb
/>
11. quinti ſic ſe habebit
<
var
>.a.e.</
var
>
ad
<
var
>.a.c.</
var
>
ſicut
<
var
>.a.
<
lb
/>
<
figure
xlink:label
="
fig-0028-01
"
xlink:href
="
fig-0028-01a
"
number
="
34
">
<
image
file
="
0028-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0028-01
"/>
</
figure
>
u.</
var
>
ad
<
var
>.a.n.</
var
>
et ex .19. eiuſdem ſic ſe habe-
<
lb
/>
bit
<
var
>.u.e.</
var
>
ad
<
var
>.n.c.</
var
>
ſicut
<
var
>.a.e.</
var
>
ad
<
var
>.a.c.</
var
>
ſed. ſic ſe
<
lb
/>
habebat
<
var
>.u.e.</
var
>
ad
<
var
>.a.i</
var
>
. </
s
>
<
s
xml:id
="
echoid-s233
"
xml:space
="
preserve
">
<
reg
norm
="
Itaque
"
type
="
simple
">Itaq;</
reg
>
ex prædicta .11. quinti, ſic ſe habebit
<
var
>.u.e.</
var
>
ad
<
var
>.n.c.</
var
>
ſicut ad
<
var
>.a.
<
lb
/>
i</
var
>
. </
s
>
<
s
xml:id
="
echoid-s234
"
xml:space
="
preserve
">Quare ex .9. eiuſdem
<
var
>.n.c.</
var
>
æqualis erit
<
var
>.a.i.</
var
>
etidcirco
<
var
>.n.c.</
var
>
pariter vnitas erit.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div55
"
type
="
math:theorem
"
level
="
3
"
n
="
24
">
<
head
xml:id
="
echoid-head40
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
24
">XXIIII</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s235
"
xml:space
="
preserve
">
<
emph
style
="
sc
">CVr</
emph
>
quibuslibet duobus numeris diuiſis adinuicem,
<
reg
norm
="
multiplicatisque
"
type
="
simple
">multiplicatisq́</
reg
>
prouenien
<
lb
/>
tibus ſimul, productum, ſemper eſt vnitas ſuperficialis? </
s
>
<
s
xml:id
="
echoid-s236
"
xml:space
="
preserve
">Nempe ex .20. ſeptimi,
<
lb
/>
quoniam vnitas linearis ſemper media proportionalis eſt inter bina prouenientia.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s237
"
xml:space
="
preserve
">Quodita ſpecularilicet.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s238
"
xml:space
="
preserve
">
<
reg
norm
="
Significentur
"
type
="
context
">Significẽtur</
reg
>
duo propoſiti numeri per
<
var
>.b.p.</
var
>
et
<
var
>.b.d.</
var
>
mutuo diuiſi, proueniens au-
<
lb
/>
tem
<
var
>.b.p.</
var
>
per
<
var
>.b.d.</
var
>
diuiſum ſit
<
var
>.b.n.</
var
>
tum proueniens
<
var
>.b.d.</
var
>
diuiſum per
<
var
>.b.p.</
var
>
ſit
<
var
>.b.a.</
var
>
<
lb
/>
et
<
var
>.b.t.</
var
>
ſit vnitas
<
var
>.b.p.</
var
>
et
<
var
>.b.e.</
var
>
vnitas
<
var
>.b.d.</
var
>
ex quo
<
var
>.b.t.</
var
>
æqualis erit
<
var
>.b.e</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s239
"
xml:space
="
preserve
">Iam ex definitio ne diuiſionis, dabitur eadem proportio
<
var
>.b.p.</
var
>
ad
<
var
>.b.n.</
var
>
quæ eſt
<
var
>.b.d.</
var
>
<
lb
/>
ad
<
var
>.b.e.</
var
>
et proportio
<
var
>.b.d.</
var
>
ad
<
var
>.b.a.</
var
>
quæ eſt
<
var
>.b.p.</
var
>
ad
<
var
>.b.t</
var
>
. </
s
>
<
s
xml:id
="
echoid-s240
"
xml:space
="
preserve
">Sed cum ſic ſe habeat
<
var
>.b.
<
lb
/>
p.</
var
>
ad
<
var
>.b.n.</
var
>
ſicut
<
var
>.b.d.</
var
>
ad
<
var
>.b.e.</
var
>
permutando ſic ſe habebit
<
var
>.b.p.</
var
>
ad
<
var
>.b.d.</
var
>
ſicut
<
var
>.b.n.</
var
>
ad
<
var
>.b.
<
lb
/>
e.</
var
>
hoc eſt ad
<
var
>.b.t.</
var
>
et cum ſic ſe habeat
<
var
>.b.d.</
var
>
ad
<
var
>.b.a.</
var
>
ſicut
<
var
>.b.p.</
var
>
ad
<
var
>.b.t</
var
>
: permutando ſic ſe
<
lb
/>
habebit
<
var
>.b.d.</
var
>
ad
<
var
>.b.p.</
var
>
ſicut
<
var
>.b.a.</
var
>
ad
<
var
>.b.t</
var
>
.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s241
"
xml:space
="
preserve
">Quare euerſim ſic ſe habebit
<
var
>.b.p.</
var
>
ad
<
var
>.
<
lb
/>
<
figure
xlink:label
="
fig-0028-02
"
xlink:href
="
fig-0028-02a
"
number
="
35
">
<
image
file
="
0028-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0028-02
"/>
</
figure
>
<
lb
/>
b.d.</
var
>
ſicut
<
var
>.b.t.</
var
>
ad
<
var
>.b.a.</
var
>
ſed
<
var
>.b.n.</
var
>
ad
<
var
>.b.t.</
var
>
ſic
<
lb
/>
ſe habebat vt
<
var
>.b.p.</
var
>
ad
<
var
>.b.d</
var
>
. </
s
>
<
s
xml:id
="
echoid-s242
"
xml:space
="
preserve
">
<
reg
norm
="
Itaque
"
type
="
simple
">Itaq;</
reg
>
ex .11.
<
lb
/>
quintiſic ſe habebit
<
var
>.b.n.</
var
>
ad
<
var
>.b.t.</
var
>
ſicut
<
var
>.b.
<
lb
/>
<
figure
xlink:label
="
fig-0028-03
"
xlink:href
="
fig-0028-03a
"
number
="
36
">
<
image
file
="
0028-03
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0028-03
"/>
</
figure
>
e.</
var
>
ad
<
var
>.b.a</
var
>
. </
s
>
<
s
xml:id
="
echoid-s243
"
xml:space
="
preserve
">Dictum autem eſt
<
var
>.b.e.</
var
>
et
<
var
>.b.t.</
var
>
idem omnino eſſe. </
s
>
<
s
xml:id
="
echoid-s244
"
xml:space
="
preserve
">Quare ex .20. ſeptimi pro-
<
lb
/>
poſiti veritas innoteſcet.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div57
"
type
="
math:theorem
"
level
="
3
"
n
="
25
">
<
head
xml:id
="
echoid-head41
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
25
">XXV</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s245
"
xml:space
="
preserve
">IDipſum & hac altera uia patebit.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s246
"
xml:space
="
preserve
">Duo illi numeri per
<
var
>.o.</
var
>
et
<
var
>.u.</
var
>
ſignificentur mutuo diuiſi, proueniens
<
reg
norm
="
autem
"
type
="
context
">autẽ</
reg
>
<
var
>.o.</
var
>
per
<
var
>.
<
lb
/>
u.</
var
>
ſit
<
var
>.e.</
var
>
et proueniens
<
var
>.u.</
var
>
per
<
var
>.o.</
var
>
ſit
<
var
>.x.</
var
>
vnitas uerò per
<
var
>.i.</
var
>
ſignificetur, quas tamen quanti-
<
lb
/>
tates ſubſcripto modo ad inuicem diſponi-
<
lb
/>
to. </
s
>
<
s
xml:id
="
echoid-s247
"
xml:space
="
preserve
">
<
reg
norm
="
Itaque
"
type
="
simple
">Itaq;</
reg
>
ex definitione diuiſionis, eadem erit
<
lb
/>
<
figure
xlink:label
="
fig-0028-04
"
xlink:href
="
fig-0028-04a
"
number
="
37
">
<
image
file
="
0028-04
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0028-04
"/>
</
figure
>
proportio
<
var
>.o.</
var
>
ad
<
var
>.e.</
var
>
quę eſt
<
var
>.u.</
var
>
ad
<
var
>.i.</
var
>
et
<
var
>.o.</
var
>
ad
<
var
>.i.</
var
>
quę
<
lb
/>
eſt
<
var
>.u.</
var
>
ad
<
var
>.x</
var
>
. </
s
>
<
s
xml:id
="
echoid-s248
"
xml:space
="
preserve
">Quare ex æqualitate
<
reg
norm
="
proportionum
"
type
="
context
">proportionũ</
reg
>
<
var
>.
<
lb
/>
c.</
var
>
ad
<
var
>.i.</
var
>
ſic ſe habebit ſicut
<
var
>.i.</
var
>
ad
<
var
>.x.</
var
>
erit enim
<
var
>.i.</
var
>
<
lb
/>
media proportionalis inter
<
var
>.e.</
var
>
et
<
var
>.x.</
var
>
ex .20.
<
reg
norm
="
autem
"
type
="
context
">autẽ</
reg
>
<
lb
/>
ſeptimi propoſitum concludetur. </
s
>
<
s
xml:id
="
echoid-s249
"
xml:space
="
preserve
">Huiuſmodi rei cauſa etiam eſt, quod proueniens
<
lb
/>
diuiſionis vnius eſt numerator æqualis denominatori diuiſionis alterius.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div59
"
type
="
math:theorem
"
level
="
3
"
n
="
26
">
<
head
xml:id
="
echoid-head42
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
26
">XXVI</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s250
"
xml:space
="
preserve
">
<
emph
style
="
sc
">CVr</
emph
>
duobus numeris mutuo diuiſis,
<
reg
norm
="
sumptis
"
type
="
context
">sũptis</
reg
>
deinde prouenientibus ſimul et adinui
<
lb
/>
cem, & per hanc ſummam, diuiſa ſumma quadratorum dictorum
<
reg
norm
="
propoſitorum
"
type
="
context
">propoſitorũ</
reg
>
</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>