Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(306)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div591
"
type
="
section
"
level
="
3
"
n
="
22
">
<
div
xml:id
="
echoid-div594
"
type
="
letter
"
level
="
4
"
n
="
2
">
<
p
>
<
s
xml:id
="
echoid-s3775
"
xml:space
="
preserve
">
<
pb
o
="
306
"
rhead
="
IO. BAPT. BENED.
"
n
="
318
"
file
="
0318
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0318
"/>
ſcientia. </
s
>
<
s
xml:id
="
echoid-s3776
"
xml:space
="
preserve
">Quare ex .9. quinti, ita erit
<
var
>.s.d.</
var
>
ad dictum
<
var
>.d.u.</
var
>
vt ad quadrilaterum
<
var
>.e.q.u.
<
lb
/>
x.</
var
>
hoc eſt vt
<
var
>.A.</
var
>
ad
<
var
>.B.</
var
>
ex .11. eiuſdem.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3777
"
xml:space
="
preserve
">Sed ſi punctum
<
var
>.q.</
var
>
fuerit extra ut in .2. figura videre eſt. </
s
>
<
s
xml:id
="
echoid-s3778
"
xml:space
="
preserve
">tunc manifeſtum erit,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
<
lb
/>
triangulus
<
var
>.e.x.t.</
var
>
maior erit pa-
<
lb
/>
rallelogrammo
<
var
>.d.u.</
var
>
per triangu
<
lb
/>
<
figure
xlink:label
="
fig-0318-01
"
xlink:href
="
fig-0318-01a
"
number
="
340
">
<
image
file
="
0318-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0318-01
"/>
</
figure
>
lum
<
var
>.q.t.u.</
var
>
cum triangulus
<
var
>.q.i.p.</
var
>
<
lb
/>
æqualis triangulo
<
var
>.d.i.e.</
var
>
excedat
<
lb
/>
quadrilaterum
<
var
>.i.t.u.p.</
var
>
per trian
<
lb
/>
gulum
<
reg
norm
="
dictum
"
type
="
context
">dictũ</
reg
>
<
var
>.q.t.u.</
var
>
quapropter
<
lb
/>
cum diuiſus fuerit triangulus
<
var
>.e.
<
lb
/>
x.t.</
var
>
mediante linea
<
var
>.o.n.K.</
var
>
ita
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
<
lb
/>
<
reg
norm
="
quadrilaterum
"
type
="
context
">quadrilaterũ</
reg
>
<
var
>.e.n.K.t.</
var
>
ſit æquale
<
lb
/>
triangulo
<
var
>.q.t.u.</
var
>
ex doctrina præ
<
lb
/>
cedenti, habebimus propoſitum.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div597
"
type
="
letter
"
level
="
4
"
n
="
3
">
<
head
xml:id
="
echoid-head461
"
style
="
it
"
xml:space
="
preserve
">Idem de frusto trianguli.</
head
>
<
head
xml:id
="
echoid-head462
"
xml:space
="
preserve
">AD EVNDEM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3779
"
xml:space
="
preserve
">SEd ſi quadrilaterum dictum eſſet fruſtum alicuius
<
reg
norm
="
trianguli
"
type
="
context
">triãguli</
reg
>
ut in figura
<
var
>.A.</
var
>
hic ſub
<
lb
/>
ſcripta videre eſt, ſuppoſita,
<
var
>b.d.</
var
>
parallela ad
<
var
>.u.p.</
var
>
ita faciendum eſſet, ducendo
<
lb
/>
ſcilicet parallelam
<
var
>.u.x.</
var
>
ad
<
var
>.b.p.</
var
>
quæ producatur vſque ad concurſum cum
<
var
>.b.d.</
var
>
<
lb
/>
in puncto
<
var
>.x.</
var
>
<
reg
norm
="
ſitque
"
type
="
simple
">ſitq́;</
reg
>
proportio data inter
<
var
>.t.a.</
var
>
et
<
var
>.a.e.</
var
>
quas duas lineas cogitemus inuicem
<
lb
/>
directè coniunctas, </
s
>
<
s
xml:id
="
echoid-s3780
"
xml:space
="
preserve
">tunc diuidatur tota
<
var
>.t.e.</
var
>
<
lb
/>
<
figure
xlink:label
="
fig-0318-02
"
xlink:href
="
fig-0318-02a
"
number
="
341
">
<
image
file
="
0318-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0318-02
"/>
</
figure
>
in puncto
<
var
>.i.</
var
>
ita vt
<
var
>.t.i.</
var
>
ad
<
var
>.i.e.</
var
>
ſit vt quadrilate
<
lb
/>
ri
<
var
>.p.d.</
var
>
ad trigonum
<
var
>.u.d.x</
var
>
. </
s
>
<
s
xml:id
="
echoid-s3781
"
xml:space
="
preserve
">deinde diuidatur
<
lb
/>
<
var
>t.i.</
var
>
in puncto r. tali modo vt
<
var
>.t.r.</
var
>
ad
<
var
>.r.i.</
var
>
ſe ha-
<
lb
/>
beat vt
<
var
>.t.a.</
var
>
ad
<
var
>.a.e.</
var
>
quo facto ex doctrina
<
reg
norm
="
prae cedenti
"
type
="
simple
">prę
<
lb
/>
cedenti</
reg
>
diuidatur totum parallelogram--
<
lb
/>
mum
<
var
>.p.x.</
var
>
mediante linea
<
var
>.o.q.</
var
>
ſecundum
<
lb
/>
quod ſe habet
<
var
>.t.r.</
var
>
ad
<
var
>.r.e</
var
>
. </
s
>
<
s
xml:id
="
echoid-s3782
"
xml:space
="
preserve
">Atque ita ſolu-
<
lb
/>
tum erit problema, vt exte ipſo ratiotina-
<
lb
/>
ri facile potes.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div599
"
type
="
letter
"
level
="
4
"
n
="
4
">
<
head
xml:id
="
echoid-head463
"
style
="
it
"
xml:space
="
preserve
">Fdem de quadrilatero in genere.</
head
>
<
head
xml:id
="
echoid-head464
"
xml:space
="
preserve
">AD EVNDEM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3783
"
xml:space
="
preserve
">SEd ſi nullum latus parallelum reliquo erit, ita faciendum erit. </
s
>
<
s
xml:id
="
echoid-s3784
"
xml:space
="
preserve
">ſi ſit tale quadrila
<
lb
/>
terum
<
var
>.b.d.u.p.</
var
>
oportet vt ipſum conuertamus in triangulum, producendo duo
<
lb
/>
quęuis eius latera oppoſita uſque ad interſectionem ut pote
<
var
>.u.p.</
var
>
et
<
var
>.d.b.</
var
>
in puncto
<
var
>.x.</
var
>
<
lb
/>
quo facto, ſupponemus
<
var
>.o.</
var
>
eſſe punctum datum, proportio verò data ſit
<
var
>.t.r.</
var
>
ad
<
var
>.r.i.</
var
>
ad
<
lb
/>
iungatur deinde
<
var
>.i.e.</
var
>
ad
<
var
>.t.i.</
var
>
ad quam
<
var
>.e.i.</
var
>
ipſa
<
var
>.t.i.</
var
>
ſe habeat vt quadrilaterum
<
var
>.b.d.u.p.</
var
>
</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>