Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(313)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div606
"
type
="
section
"
level
="
3
"
n
="
23
">
<
div
xml:id
="
echoid-div610
"
type
="
letter
"
level
="
4
"
n
="
2
">
<
p
>
<
s
xml:id
="
echoid-s3844
"
xml:space
="
preserve
">
<
pb
o
="
313
"
rhead
="
EPISTOL AE.
"
n
="
325
"
file
="
0325
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0325
"/>
faciemus, quod diameter
<
var
>.a.b.</
var
>
dictæ ſphæræ ita ſe habcat ad
<
var
>.e.f.</
var
>
ex .10. ſexti, quæ
<
lb
/>
<
var
>e.f.</
var
>
erit reliqua axis quæſita. </
s
>
<
s
xml:id
="
echoid-s3845
"
xml:space
="
preserve
">Vnde conſtituta cum fuerit ellipſis
<
var
>.d.f.t.e.</
var
>
ex dictis axi-
<
lb
/>
bus, </
s
>
<
s
xml:id
="
echoid-s3846
"
xml:space
="
preserve
">deinde circumuertendo ellipſim circa maiorem axem, conſtituemus ſphæroi-
<
lb
/>
dem oblongam, ſi autem circumuertemus ipſam circa minorem axim conſtituemus
<
lb
/>
ſphæroidem prolatam.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3847
"
xml:space
="
preserve
">Quod autem talis operatio rationalis ſit, nulli dubium erit, que
<
unsure
/>
tieſcunque co-
<
lb
/>
gnoſcet conum rectum
<
var
>.e.u.f.</
var
>
æqualem eſſe cono recto
<
var
>.a.c.b.</
var
>
ex .2. parte .12. duodeci
<
lb
/>
mi Euclid. </
s
>
<
s
xml:id
="
echoid-s3848
"
xml:space
="
preserve
">& quod cum conus
<
var
>.e.d.f.</
var
>
duplus ſit cono
<
var
>.e.u.f.</
var
>
ex lemmate collecto ab
<
lb
/>
11. duodecimi, conus
<
var
>.e.d.f.</
var
>
duplus exiſtit etiam cono
<
var
>.a.c.b.</
var
>
ex .7. quinti. </
s
>
<
s
xml:id
="
echoid-s3849
"
xml:space
="
preserve
">Cum de-
<
lb
/>
inde ex .32. primi lib. de ſphæra, & cyllindro ſphæra
<
var
>.a.c.b.q.</
var
>
quadrupla ſit cono
<
var
>.a.
<
lb
/>
c.b.</
var
>
ipſa conſequenter dupla erit cono
<
var
>.e.d.f.</
var
>
ſed ex .29. primi de conoidalibus, dimi
<
lb
/>
dium ſphæroidis
<
var
>.e.d.f.t.</
var
>
hoc eſt
<
var
>.e.d.f.</
var
>
dupla eſt cono
<
var
>.e.d.f</
var
>
. </
s
>
<
s
xml:id
="
echoid-s3850
"
xml:space
="
preserve
">Quare talis medietas
<
lb
/>
æqualis eſt ſphæræ propoſitæ, totaq́ue ſphæroides dupla erit ſphærę datæ. </
s
>
<
s
xml:id
="
echoid-s3851
"
xml:space
="
preserve
">Quod
<
lb
/>
autem dico de proportione dupla, idem infero de qualibet alia, ſumendo
<
var
>.u.x.</
var
>
ita pro
<
lb
/>
portionatam ad
<
var
>.d.x.</
var
>
vt proponitur.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3852
"
xml:space
="
preserve
">Sphęram autem inuenire quæ dimidia ſit ſphæroidis propoſitæ nullius erit nego-
<
lb
/>
tij, quotieſcunque inuentus fuerit modus diuidendi vnam datam proportionem in
<
lb
/>
tres æquales partes.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3853
"
xml:space
="
preserve
">Sit propoſita ſphæroides
<
var
>.e.f.d.t.</
var
>
cuius axes ex conſequentia dantur
<
var
>.e.f.</
var
>
et
<
var
>.d.t.</
var
>
quę
<
lb
/>
quidem ſphæroides ſit primo oblonga, et
<
var
>.u.x.</
var
>
ſit dimidium axis maioris. </
s
>
<
s
xml:id
="
echoid-s3854
"
xml:space
="
preserve
">imagine-
<
lb
/>
tur etiam conus
<
var
>.e.u.f.</
var
>
vt ſupra. </
s
>
<
s
xml:id
="
echoid-s3855
"
xml:space
="
preserve
">Imaginetur etiam factum eſſe, quod proponitur, hoc
<
lb
/>
eſt, vt ſphæra
<
var
>.a.b.c.q.</
var
>
ſit dimidium ipſius ſphæroidis, vnde conus
<
var
>.a.c.b.</
var
>
æqualis erit
<
lb
/>
cono
<
var
>.e.u.x.</
var
>
vt ſupra demonſtratum eſt, & ſit
<
var
>.g.h.</
var
>
media proportionalis inter
<
var
>.u.x.</
var
>
et
<
lb
/>
<
var
>o.c</
var
>
. </
s
>
<
s
xml:id
="
echoid-s3856
"
xml:space
="
preserve
">Iam viſum ſuperius fuit, quod eadem proportio erat ipſius
<
var
>.u.x.</
var
>
ad
<
var
>.g.h.</
var
>
quæ
<
var
>.a.b.</
var
>
<
lb
/>
ad
<
var
>.e.f.</
var
>
</
s
>
<
s
xml:id
="
echoid-s3857
"
xml:space
="
preserve
">quare eadem quæ
<
var
>.o.b.</
var
>
ad
<
var
>.e.x.</
var
>
ſed
<
var
>.u.x.</
var
>
et
<
var
>.e.x.</
var
>
dantur. </
s
>
<
s
xml:id
="
echoid-s3858
"
xml:space
="
preserve
">inter quas
<
var
>.g.h.</
var
>
et
<
var
>.o.b.</
var
>
vel
<
lb
/>
<
var
>o.c.</
var
>
(nam
<
var
>.o.c.</
var
>
æqualis eſt
<
var
>.o.b.</
var
>
) medię proportionales ſunt, eo quod cum
<
var
>.g.h.</
var
>
media
<
lb
/>
proportionalis ſit inter
<
var
>.u.x.</
var
>
et
<
var
>.o.c.</
var
>
& proportio
<
var
>.o.b.</
var
>
ad
<
var
>.e.x.</
var
>
æqualis ſit ei, quæ
<
var
>.u.x.</
var
>
<
lb
/>
ad
<
var
>.g.h.</
var
>
hoc eſt ei quæ
<
var
>.g.h.</
var
>
ad
<
var
>.o.c.</
var
>
vel. ad
<
var
>.o.b.</
var
>
</
s
>
<
s
xml:id
="
echoid-s3859
"
xml:space
="
preserve
">quare quotieſcunque inuentæ fuerint
<
var
>.
<
lb
/>
g.h.</
var
>
et
<
var
>.o.c.</
var
>
vel
<
var
>.o.b.</
var
>
mediæ proportionales inter
<
var
>.d.x.</
var
>
et
<
var
>.x.e.</
var
>
ipſa
<
var
>.o.c.</
var
>
vel
<
var
>.o.b.</
var
>
erit ſemi
<
lb
/>
diameter ſphæræ quæſitę. </
s
>
<
s
xml:id
="
echoid-s3860
"
xml:space
="
preserve
">eodem modo faciendum erit ſi ſphęroides fuerit prolata.</
s
>
</
p
>
<
figure
position
="
here
"
number
="
348
">
<
image
file
="
0325-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0325-01
"/>
</
figure
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>