Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(316)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div614
"
type
="
section
"
level
="
3
"
n
="
24
">
<
div
xml:id
="
echoid-div615
"
type
="
letter
"
level
="
4
"
n
="
2
">
<
p
>
<
s
xml:id
="
echoid-s3872
"
xml:space
="
preserve
">
<
pb
o
="
316
"
rhead
="
IO. BAPT. BENED.
"
n
="
328
"
file
="
0328
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0328
"/>
lum, cuius data ſit b aſis tantummodo ſimul cum angulo, qui ipſi baſi opponitur.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3873
"
xml:space
="
preserve
">Imagineris igitur triangulum datum eſſe obtuſiangulum
<
var
>.a.b.g.</
var
>
cuius baſi
<
var
>.b.
<
lb
/>
g.</
var
>
ſit nobis data ſimul cum angulo
<
var
>.a.</
var
>
ei oppoſito, obtuſoq́ue; </
s
>
<
s
xml:id
="
echoid-s3874
"
xml:space
="
preserve
">Conſidera etiam cir-
<
lb
/>
culum
<
var
>.a.b.g.q.</
var
>
ipſum trian gulum circunſcribentem, cuius diameter
<
var
>.q.e.p.</
var
>
tranſeat
<
lb
/>
per
<
var
>.m.</
var
>
punctum medium ipſius
<
var
>.b.g.</
var
>
<
reg
norm
="
tunc
"
type
="
context
">tũc</
reg
>
protractis imaginatione
<
var
>.e.g.</
var
>
et
<
var
>.g.p.</
var
>
certi eri-
<
lb
/>
mus angulos. circa
<
var
>.m.</
var
>
rectos eſſe ex .3 tertij Eucli.
<
reg
norm
="
angulumque
"
type
="
simple
">angulumq́</
reg
>
<
var
>.q.e.g.</
var
>
duplum eſſe an
<
lb
/>
gulo
<
var
>.q.p.g.</
var
>
ex .19. eiuſdem, vnde æqualem angulo
<
var
>.a.</
var
>
qui etiam duplus eſt angulo
<
var
>.q.
<
lb
/>
p.g.</
var
>
quapropter proportio arcus
<
var
>.q.g.</
var
>
ad arcum
<
lb
/>
<
figure
xlink:label
="
fig-0328-01
"
xlink:href
="
fig-0328-01a
"
number
="
350
">
<
image
file
="
0328-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0328-01
"/>
</
figure
>
<
var
>g.p.</
var
>
tibi cognita erit, & proportio etiam chor-
<
lb
/>
de
<
var
>.p.g.</
var
>
ad ſinum
<
var
>.m.g.</
var
>
arcus
<
var
>.g.p.</
var
>
& quia
<
var
>.m.g.</
var
>
vt
<
lb
/>
dimidium ipſius
<
var
>.b.g.</
var
>
tibi data eſt, cognoſces
<
lb
/>
etiam
<
var
>.p.g.</
var
>
vt
<
var
>.m.g.</
var
>
& ſic tertium latus
<
var
>.m.p.</
var
>
trian-
<
lb
/>
guli orthogonij
<
var
>.p.m.g.</
var
>
& q
<
unsure
/>
a ex .34. tertij quod
<
lb
/>
fit ex
<
var
>.p.m.</
var
>
in
<
var
>.m.q.</
var
>
eſt æquale ei quod fit ex
<
var
>.b.m.</
var
>
<
lb
/>
in
<
var
>.m.g.</
var
>
ideo cum diuiſum fuerit productum
<
var
>.b.</
var
>
<
lb
/>
m in
<
var
>.m.g.</
var
>
per
<
var
>.p.m.</
var
>
proueniet
<
var
>.m.q.</
var
>
quapropter
<
lb
/>
habebis totum
<
var
>.q.p</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3875
"
xml:space
="
preserve
">Idem efficies, ſi
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
angulus
<
var
>.a.</
var
>
acutus fuiſſet.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div617
"
type
="
letter
"
level
="
4
"
n
="
3
">
<
head
xml:id
="
echoid-head479
"
style
="
it
"
xml:space
="
preserve
">Modus inueniendi puncta elliptica via Pergei.</
head
>
<
head
xml:id
="
echoid-head480
"
xml:space
="
preserve
">AD EVNDEM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3876
"
xml:space
="
preserve
">MOdus inueniendi puncta elliptica, via .21. primi lib. Pergei ex datis axibus,
<
lb
/>
vt vbi alias ſignificati, talis eſt.
<
lb
/>
<
figure
xlink:label
="
fig-0328-02
"
xlink:href
="
fig-0328-02a
"
number
="
351
">
<
image
file
="
0328-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0328-02
"/>
</
figure
>
</
s
>
<
s
xml:id
="
echoid-s3877
"
xml:space
="
preserve
">Sit exempli gratia maior axis propo-
<
lb
/>
ſitus
<
var
>.a.c.</
var
>
minor autem
<
var
>.b.d.</
var
>
cum ergo
<
lb
/>
volueris inuenire punctum circunfe-
<
lb
/>
rentiæ correſpondentem puncto
<
var
>.e.</
var
>
<
lb
/>
maioris axis, inueniemus primò la-
<
lb
/>
tus tetragonicum producti
<
var
>.a.g.</
var
>
in
<
var
>.g.
<
lb
/>
c.</
var
>
quod ſit
<
var
>.h.</
var
>
<
reg
norm
="
latusque
"
type
="
simple
">latusq́</
reg
>
<
reg
norm
="
tetragonicum
"
type
="
context
">tetragonicũ</
reg
>
pro-
<
lb
/>
ducti
<
var
>.a.e.</
var
>
in
<
var
>.e.c.</
var
>
quod ſit
<
var
>.i</
var
>
. </
s
>
<
s
xml:id
="
echoid-s3878
"
xml:space
="
preserve
">deinde in-
<
lb
/>
ueniemus lineam
<
var
>.K.</
var
>
tertiam in con-
<
lb
/>
tinua proportionalitate cum
<
var
>.h.</
var
>
et
<
var
>.i.</
var
>
<
lb
/>
vnde
<
var
>.i.</
var
>
erit media proportionalis in-
<
lb
/>
ter
<
var
>.h.</
var
>
et
<
var
>.K.</
var
>
& vt
<
var
>.h.</
var
>
proportionalis erit
<
lb
/>
ad
<
var
>.K.</
var
>
inueniemus
<
var
>.e.f.</
var
>
cui
<
var
>.g.d.</
var
>
medie-
<
lb
/>
tas ſecundi axis ita ſe habeat, quæ po
<
lb
/>
ſtea iuncta axi maiori, ad angulosrectos in puncto
<
var
>.e.</
var
>
dabit ſitum puncti
<
var
>.f.</
var
>
quæſiti ex
<
lb
/>
dicta .21. primi lib. Pergei, ſed talis modus prolixus eſt.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>