Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(329)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div630
"
type
="
section
"
level
="
3
"
n
="
26
">
<
div
xml:id
="
echoid-div634
"
type
="
letter
"
level
="
4
"
n
="
2
">
<
p
>
<
s
xml:id
="
echoid-s3992
"
xml:space
="
preserve
">
<
pb
o
="
329
"
rhead
="
EPISTOL AE.
"
n
="
341
"
file
="
0341
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0341
"/>
rem, quæ ita reperientur, efficiemus primo anguium coni, qui ſit
<
var
>.i.A.b.</
var
>
quem diui-
<
lb
/>
demus per æqualia mediante
<
var
>.A.q.</
var
>
conſtituendo
<
var
>.A.i.</
var
>
huius anguli æqualem
<
var
>.A.i.</
var
>
ſu-
<
lb
/>
perficiei conicæ et
<
var
>.A.q.</
var
>
diuidentem, æqualem parti
<
var
>.A.q.</
var
>
axis coni, ducendo poſtea
<
lb
/>
ab
<
var
>.i.</
var
>
per
<
var
>.q.</
var
>
lineam vnam quouſque concurrat
<
var
>.A.b.</
var
>
in puncto
<
var
>.b.</
var
>
habebimus
<
var
>.i.b.</
var
>
pro
<
lb
/>
maiori axi ipſi ellipſis, quod per ſe clarum eſt, cuius medietas ſit
<
var
>.i.c.</
var
>
ſed
<
var
>.i.q.</
var
>
ipſius
<
var
>.i.
<
lb
/>
b.</
var
>
æqualis eſt ipſi
<
var
>.q.i.</
var
>
ipſius coni, ex quarta primi Eucli. et
<
var
>.q.b.</
var
>
ipſius
<
var
>.i.b.</
var
>
æqualis alte
<
lb
/>
ri parti inuiſibili. </
s
>
<
s
xml:id
="
echoid-s3993
"
xml:space
="
preserve
">Reliquum eſt, vt reperiamus minorem axem, quem vocabimus
<
var
>.
<
lb
/>
f.r.</
var
>
ducatur ergo primum
<
var
>.q.a.u.n.</
var
>
ad rectos cum
<
var
>.i.b.</
var
>
<
reg
norm
="
æqualisque
"
type
="
simple
">æqualisq́;</
reg
>
ei quæ eſt coni, & diui
<
lb
/>
ſa ſimiliter in
<
var
>.a.</
var
>
quæ
<
var
>.u.n.</
var
>
ipſius coni nobis cognita eſt ex lateribus
<
var
>.A.u.</
var
>
et
<
var
>.A.n.</
var
>
& ex
<
lb
/>
angulo coni, et
<
var
>.a.q.</
var
>
æqualis eſt
<
var
>.e.p.</
var
>
ex .34. primi. </
s
>
<
s
xml:id
="
echoid-s3994
"
xml:space
="
preserve
">Nunc certi erimus ex .21. primi
<
lb
/>
Pergei, quod eadem proportio erit quadrati
<
var
>.u.q.</
var
>
ad quadratum ipſius
<
var
>.f.c.</
var
>
quæ pro-
<
lb
/>
ducti ipſius
<
var
>.i.q.</
var
>
in
<
var
>.q.b.</
var
>
ad productum ipſius
<
var
>.i.c.</
var
>
in
<
var
>.c.b.</
var
>
& cum cognita nobis ſint
<
lb
/>
hæc tria producta hoc eſt
<
var
>.i.q.</
var
>
in
<
var
>.q.b.</
var
>
et
<
var
>.i.c.</
var
>
in
<
var
>.c.b.</
var
>
et
<
var
>.u.q.</
var
>
in ſeipſa, cognoſcemus
<
reg
norm
="
etiam
"
type
="
context
">etiã</
reg
>
<
lb
/>
quartum ipſius
<
var
>.f.c.</
var
>
& fic
<
var
>.f.c.</
var
>
<
reg
norm
="
eiuſque
"
type
="
simple
">eiuſq́;</
reg
>
duplum
<
var
>.f.r.</
var
>
cogniti nobis itaque cum ſint hi duo
<
lb
/>
axes
<
var
>.i.b.</
var
>
et
<
var
>.f.r.</
var
>
formabimus ellipſim. </
s
>
<
s
xml:id
="
echoid-s3995
"
xml:space
="
preserve
">Deinde producemus axim
<
var
>.b.i.</
var
>
à part
<
var
>e.i.</
var
>
quo-
<
lb
/>
uſque
<
var
>.i.o.</
var
>
æqualis ſit ei quæ extra conum eſt, dein-
<
lb
/>
<
figure
xlink:label
="
fig-0341-01
"
xlink:href
="
fig-0341-01a
"
number
="
364
">
<
image
file
="
0341-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0341-01
"/>
</
figure
>
de ducemus
<
var
>.o.a.</
var
>
quæ circunferentiam ellipticam
<
lb
/>
ſecabit in puncto
<
var
>.K.</
var
>
vnde habebimus quantita-
<
lb
/>
tem ipſius
<
var
>.o.K.</
var
>
et
<
var
>.K.i.</
var
>
rectam. </
s
>
<
s
xml:id
="
echoid-s3996
"
xml:space
="
preserve
">inde mediante cir-
<
lb
/>
cino ſi acceperimus rectam diſtantiam ab
<
var
>.i.</
var
>
ad
<
var
>.K.</
var
>
<
lb
/>
in ellipſi, </
s
>
<
s
xml:id
="
echoid-s3997
"
xml:space
="
preserve
">deinde firmando pedem circini in pun-
<
lb
/>
cto
<
var
>.i.</
var
>
in ſuperficie conica, & cum alio ſignando
<
lb
/>
lineam vnam curuam ad partem
<
var
>.K.</
var
>
in ſuperficie
<
lb
/>
conica, ſumendo poſtea interuallum
<
var
>.o.K.</
var
>
extra el
<
lb
/>
lipſim, </
s
>
<
s
xml:id
="
echoid-s3998
"
xml:space
="
preserve
">deinde firmando vnum pedem circini in
<
lb
/>
extre mitate gnomonis, cum alio poſtea ſignan-
<
lb
/>
do aliam lineam curuam in ſuperficie ipſius coni,
<
lb
/>
quæ primam ſe cet in puncto
<
var
>.K.</
var
>
hoc erit punctum
<
lb
/>
quæſitum horę propoſitæ in ſuperficie conica
<
lb
/>
propoſita.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3999
"
xml:space
="
preserve
">Sed ſi talis ſectio fuerit parabole, vel hyperbo
<
lb
/>
le, tunc mediante ſuo diametro
<
var
>.i.q.</
var
>
cum baſi
<
var
>.u.
<
lb
/>
q.n.</
var
>
cognita, deſignabimus ipſam ſectionem
<
var
>.u.i.</
var
>
n
<
lb
/>
ope mei
<
reg
norm
="
inſtrumenti
"
type
="
context
">inſtrumẽti</
reg
>
in calce meę gnomonicæ de
<
lb
/>
ſcripti, </
s
>
<
s
xml:id
="
echoid-s4000
"
xml:space
="
preserve
">deinde diuiſa
<
var
>.u.q.</
var
>
in
<
var
>.a.</
var
>
<
reg
norm
="
pro
"
type
="
simple
">ꝓ</
reg
>
<
reg
norm
="
ductaque
"
type
="
simple
">ductaq́;</
reg
>
<
var
>q.i.</
var
>
<
reg
norm
="
vſque
"
type
="
simple
">vſq;</
reg
>
<
lb
/>
<
figure
xlink:label
="
fig-0341-02
"
xlink:href
="
fig-0341-02a
"
number
="
365
">
<
image
file
="
0341-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0341-02
"/>
</
figure
>
ad
<
var
>.o.</
var
>
<
reg
norm
="
ductaque
"
type
="
simple
">ductaq́;</
reg
>
<
var
>.o.a.</
var
>
habebimus punctum
<
var
>.K</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4001
"
xml:space
="
preserve
">Reli-
<
lb
/>
qua facienda ſunt, vt dictum eſt de ellipſi.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4002
"
xml:space
="
preserve
">Inuenta modo cum fuerint duo puncta eiuſ-
<
lb
/>
dem horæ propoſitę, ducemus ab vno ad a-
<
lb
/>
liud, lineam horariam mediante circino trium
<
lb
/>
crurum, quem tibi ſcripſi nudius tertius pro cyl
<
lb
/>
lindro, quæ
<
reg
norm
="
quidem
"
type
="
context
">quidẽ</
reg
>
linea crit portio gyri ellipſis,
<
lb
/>
ſeu hyperbolę, vel parabolę, vt à te ipſo cogi-
<
lb
/>
tare potes.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>