Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(333)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div642
"
type
="
section
"
level
="
3
"
n
="
28
">
<
div
xml:id
="
echoid-div642
"
type
="
letter
"
level
="
4
"
n
="
1
">
<
pb
o
="
333
"
rhead
="
EPISTOL AE.
"
n
="
345
"
file
="
0345
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0345
"/>
<
p
>
<
s
xml:id
="
echoid-s4035
"
xml:space
="
preserve
">Si
<
reg
norm
="
autem
"
type
="
context
">autẽ</
reg
>
res viſibilis
<
reg
norm
="
oculusque
"
type
="
simple
">oculusq́;</
reg
>
ambo fuerint intra circulum,
<
reg
norm
="
tunc
"
type
="
context
">tũc</
reg
>
poſſibile eſſet quod
<
lb
/>
<
reg
norm
="
longitudo
"
type
="
context
">lõgitudo</
reg
>
<
var
>.u.b.n.</
var
>
modo maior, modo minor, modo verò æqualis eſſet ipſa
<
var
>.u.o.n.</
var
>
<
reg
norm
="
nunc
"
type
="
context
">nũc</
reg
>
.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4036
"
xml:space
="
preserve
">Quod etiam affirmo de
<
var
>.u.b.p.</
var
>
ſimiliter etiam eueniet ſi vnus terminorum
<
var
>.u.</
var
>
vel
<
var
>.n.</
var
>
<
lb
/>
fuerit intra circunferentiam, reliquus verò extra ipſam.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4037
"
xml:space
="
preserve
">Conſideremus nunc hic inſraſcriptam .4. figuram vbi
<
var
>.d.b.p.</
var
>
ſit circunferentia oxy
<
lb
/>
gonia ſeu elliptica (quod idem eſt) cuius maior axis ſit
<
var
>.d.p.</
var
>
in quo, duo termini
<
var
>.u.n.</
var
>
<
lb
/>
ſint centra eius generationis: </
s
>
<
s
xml:id
="
echoid-s4038
"
xml:space
="
preserve
">b.x. verò ſit minor axis. </
s
>
<
s
xml:id
="
echoid-s4039
"
xml:space
="
preserve
">Imaginemur etiam circulum
<
var
>.
<
lb
/>
b.o.x.</
var
>
cuius ſemidiameter ſit
<
var
>.c.b.</
var
>
non maior medietate minoris axis, ne circunferen-
<
lb
/>
tia huiuſmodi circuli ſecet circunferentiam oxygoniam. </
s
>
<
s
xml:id
="
echoid-s4040
"
xml:space
="
preserve
">Cogitemus etiam circu-
<
lb
/>
lum
<
var
>.b.e.</
var
>
cuius ſemidiameter, minor non ſit minori axe
<
var
>.b.x.</
var
>
ipſius oxygoniæ, ne ſe
<
lb
/>
inuicem ſecent huiuſmodi circunferentiæ, ſint etiam ambo eorum centra in linea
<
var
>.b.
<
lb
/>
x.</
var
>
minoris axis, & punctum
<
var
>.b.</
var
>
ſit commune vnicuique earum periphæriarum, vnde
<
lb
/>
minor circulus, totus intra, maior autem, totus extra ipſam
<
reg
norm
="
figuram
"
type
="
context
">figurã</
reg
>
oxygoniam erit.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4041
"
xml:space
="
preserve
">Nunc ad partem
<
var
>.o.r.e.</
var
>
vbi non communicant inuicem ipſæ circunferentiæ ducan-
<
lb
/>
tur
<
var
>.n.o.r.e</
var
>
:
<
var
>u.o</
var
>
:
<
var
>u.r</
var
>
: et
<
var
>.u.e.</
var
>
& per
<
var
>.b.</
var
>
et
<
var
>.r.</
var
>
cogitetur tranſire alium circulum, cuius cen-
<
lb
/>
trum in axe
<
var
>.b.x.</
var
>
ſit
<
var
>.t.</
var
>
<
reg
norm
="
omnesque
"
type
="
simple
">omnesq́;</
reg
>
iſti circuli imaginentur trium diuerſorum ſphærico-
<
lb
/>
rum ſpeculorum, vnde pro genera
<
lb
/>
tione
<
reg
norm
="
ipſius
"
type
="
simple
">ipſiꝰ</
reg
>
oxygonię, ſeu ex .52. ter
<
lb
/>
tij Pergei, habebis longitudinem
<
var
>.
<
lb
/>
<
figure
xlink:label
="
fig-0345-01
"
xlink:href
="
fig-0345-01a
"
number
="
371
">
<
image
file
="
0345-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0345-01
"/>
</
figure
>
u.r.n.</
var
>
ęqualem eſſe longitudini
<
var
>.u.b.
<
lb
/>
n.</
var
>
& ei, quæ eſt
<
var
>.u.o.n.</
var
>
(vt minor ip
<
lb
/>
ſa
<
var
>.u.r.n.</
var
>
ex .21. primi Euclidis) mi-
<
lb
/>
nor ipſa
<
var
>.u.b.n.</
var
>
& longitudinem
<
var
>.u.
<
lb
/>
e.n.</
var
>
(vt maior ipſa
<
var
>.u.r.n.</
var
>
ex eadem
<
num
value
="
21
">.
<
lb
/>
21.</
num
>
primi Eucli.) maior ipſa
<
var
>.u.b.n</
var
>
.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4042
"
xml:space
="
preserve
">Sed ſi quis vellet hoc demonſtrare
<
lb
/>
ope circuli,
<
reg
norm
="
vnius
"
type
="
simple
">vniꝰ</
reg
>
<
reg
norm
="
tantummodo
"
type
="
context context
">tãtũmodo</
reg
>
ſpeculi,
<
lb
/>
<
reg
norm
="
multiplicando
"
type
="
context
">multiplicãdo</
reg
>
ipſas oxygonias
<
reg
norm
="
quem- admodum
"
type
="
wordlist
">quẽ-
<
lb
/>
admodum</
reg
>
de ipſis circulis fecimus, obtineret ſimiliter propoſitum.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div647
"
type
="
letter
"
level
="
4
"
n
="
2
">
<
head
xml:id
="
echoid-head497
"
style
="
it
"
xml:space
="
preserve
">Solutio dubitationis.</
head
>
<
head
xml:id
="
echoid-head498
"
xml:space
="
preserve
">AD EVNDEM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4043
"
xml:space
="
preserve
">RAtionalis eſt dubitatio tua,
<
lb
/>
<
figure
xlink:label
="
fig-0345-02
"
xlink:href
="
fig-0345-02a
"
number
="
372
">
<
image
file
="
0345-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0345-02
"/>
</
figure
>
vtrum (
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
circulus minor hoc
<
lb
/>
eſt
<
var
>.b.o.</
var
>
habeat ſuum centrum in mi
<
lb
/>
nori axe inter centrum oxygoniæ,
<
lb
/>
et .b: exiſtente
<
var
>.b.</
var
>
extremo axis mi-
<
lb
/>
noris,
<
reg
norm
="
communeque
"
type
="
simple
">communeq́;</
reg
>
ambobus circun-
<
lb
/>
ferentijs circuli ſcilicet & oxigonię)
<
lb
/>
dictus circulus minor, plura puncta
<
lb
/>
communia habeat cum ipſis circun-
<
lb
/>
ferentijs.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4044
"
xml:space
="
preserve
">Cui dubitationi
<
reg
norm
="
reſpondeo
"
type
="
context
">reſpõdeo</
reg
>
quod
<
lb
/>
quotieſcunque centrum alicuius cir
<
lb
/>
culi fuerit idem cum
<
var
>.c.</
var
>
centro oxy-
<
lb
/>
goniæ, vel inter
<
var
>.c.</
var
>
et
<
var
>.b.</
var
>
in interual-
<
lb
/>
lo ſcilicet minoris axis, exiſtente
<
var
>.b.</
var
>
<
lb
/>
ſua extremitate communi ambabus </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>