Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(337)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div642
"
type
="
section
"
level
="
3
"
n
="
28
">
<
div
xml:id
="
echoid-div650
"
type
="
letter
"
level
="
4
"
n
="
3
">
<
p
>
<
s
xml:id
="
echoid-s4091
"
xml:space
="
preserve
">
<
pb
o
="
337
"
rhead
="
EPISTOLAE.
"
n
="
349
"
file
="
0349
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0349
"/>
oculorum clauderetur, nihilominus cum reliquo obiectum vidiſſemus in
<
reg
norm
="
eodem
"
type
="
context
">eodẽ</
reg
>
ipſo
<
lb
/>
loco
<
var
>.d.</
var
>
& non in alio ex ſuperius dictis rationibus.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4092
"
xml:space
="
preserve
">Et ſi ſtantibus ijs terminis volueremus pupillam oculi
<
var
>.u.</
var
>
verſus aliam
<
var
>.a.</
var
>
ad aſpi-
<
lb
/>
ciendum punctum
<
var
>.n.</
var
>
in ſuperficie
<
var
>.g.h.</
var
>
ipſius ſpeculi, hoc eſt ſi fecerimus quod axes
<
lb
/>
viſuales ſeinuicem ſecarent in ipſo puncto
<
var
>.n</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4093
"
xml:space
="
preserve
">tunc videremur nobis videre duas
<
lb
/>
imagines ipſius obiecti
<
var
>.b.</
var
>
intra ſpeculum, eo quod obiectum, propter hoc non
<
lb
/>
ceſſaret reflectere ad oculos ab ipſis punctis
<
var
>.n.</
var
>
et
<
var
>.t.</
var
>
quapropter recipiendo ra-
<
lb
/>
dium
<
var
>.t.u.</
var
>
in ſitu axis oculi
<
var
>.u.</
var
>
& radium
<
var
>.n.a.</
var
>
in ſitu axis oculi
<
var
>.a.</
var
>
hi axes ex neceſſitate
<
lb
/>
(vt probauimus ) ſeinuicem ſecant in puncto
<
var
>.d.</
var
>
vnde vnam tantummodo imaginem
<
lb
/>
ipſius obiecti nobis apparebit.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4094
"
xml:space
="
preserve
">Ex his igitur omnibus potes facilè videre omnem imaginem, cuiuſuis obiecti, re-
<
lb
/>
flexam à ſpeculo, reperiri in ipſo catheto incidentiæ, cum ipſe ſemper ſit communis
<
lb
/>
ſectio duarum ſuperficierum reflexionis, in quo catheto concurrunt ipſæ axes vi-
<
lb
/>
ſuales.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4095
"
xml:space
="
preserve
">Exijſdem etiam dictis rationibus facile compræhendere poteris, vnde fiat, vt vi-
<
lb
/>
deamus imaginem reflexam à ſpeculis ſphęricis concauis citra
<
reg
norm
="
ipſorum
"
type
="
context
">ipſorũ</
reg
>
ſuperficiem, &
<
lb
/>
non vltra. </
s
>
<
s
xml:id
="
echoid-s4096
"
xml:space
="
preserve
">Quod
<
reg
norm
="
nunquam
"
type
="
context
">nunquã</
reg
>
euenit, niſi quando
<
reg
norm
="
punctum
"
type
="
context
">punctũ</
reg
>
<
var
>.d.</
var
>
interſectionis
<
reg
norm
="
ipſorum
"
type
="
context
">ipſorũ</
reg
>
<
reg
norm
="
radiorum
"
type
="
context
">radiorũ</
reg
>
<
lb
/>
viſualium (quod alio in loco non fit, niſi in catheto incidentiæ hoc eſt in communi
<
lb
/>
ſectione duarum ſuperficierum reflexionis. </
s
>
<
s
xml:id
="
echoid-s4097
"
xml:space
="
preserve
">Dato quod obiectum non ſit in vna ea-
<
lb
/>
demq́ue ſuperficie, in qua reperti fuerint axes viſuales, hoc eſt dato,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
ambo axes
<
lb
/>
viſuales non ſint in vna
<
reg
norm
="
eademque
"
type
="
simple
">eademq́;</
reg
>
ſuperficie reflexionis) reperitur citra & non vltra ſu
<
lb
/>
perficiem ipſius ſpeculi.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4098
"
xml:space
="
preserve
">Ad cuius rei euidentiam non
<
reg
norm
="
prætermittam
"
type
="
context
">prætermittã</
reg
>
dicere, quod cum debeant ſemper ſu-
<
lb
/>
perficies reflexionum perpendiculares eſſe, velad rectos ſecare ſuperficiem ipſius
<
lb
/>
ſpeculi, ipſarum communes ſectiones cum ſuperficie ſpeculi ſphęrici, ſemper erunt
<
lb
/>
circunferentiæ magnorum circulorum illius ſphæræ, cuius portio eſt ſpeculum
<
lb
/>
propoſitum, vt etiam Vitellio affirmat in prima ſexti libri. </
s
>
<
s
xml:id
="
echoid-s4099
"
xml:space
="
preserve
">Vnde vnuſquiſque ca-
<
lb
/>
thetus incidentiæ tranſibit per centrum ſpeculi, cum ipſe ſit communis ſectio dua-
<
lb
/>
rum ſuperficierum reflexionis, </
s
>
<
s
xml:id
="
echoid-s4100
"
xml:space
="
preserve
">quare in ipſo catheto erit punctum interſectionis ip
<
lb
/>
ſorum axium viſualium ex neceſſitate, vt videbimus, ſi vnam tantummodo
<
reg
norm
="
imaginem
"
type
="
context
">imaginẽ</
reg
>
<
lb
/>
obiecti nobis videremur videre.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4101
"
xml:space
="
preserve
">Exempli gratia, ſint duæ ſuperficies reflexionis ſpeculi ſphærici concaui
<
var
>.b.n.c.a.</
var
>
<
lb
/>
et
<
var
>.b.t.c.u.</
var
>
<
reg
norm
="
obiectumque
"
type
="
simple
">obiectumq́;</
reg
>
ſit
<
var
>.b.</
var
>
oculi autem ſint
<
var
>.a.u.</
var
>
punctum verò ſuperficiei ſpeculi, à
<
lb
/>
quo obiectum emittit reflexionem ſuę
<
lb
/>
imaginis ad oculum
<
var
>.a.</
var
>
ſit
<
var
>.n.</
var
>
<
reg
norm
="
punctum
"
type
="
context
">pũctum</
reg
>
au-
<
lb
/>
<
figure
xlink:label
="
fig-0349-01
"
xlink:href
="
fig-0349-01a
"
number
="
376
">
<
image
file
="
0349-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0349-01
"/>
</
figure
>
<
figure
xlink:label
="
fig-0349-02
"
xlink:href
="
fig-0349-02a
"
number
="
377
">
<
image
file
="
0349-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0349-02
"/>
</
figure
>
tem à quo eandem reflectit oculo
<
var
>.u.</
var
>
ſit
<
lb
/>
t. communis autem ſectio harum dua-
<
lb
/>
rum ſuperficierum ſit
<
var
>.b.c.</
var
>
ſed
<
var
>.x.</
var
>
<
reg
norm
="
centrum
"
type
="
context
">centrũ</
reg
>
<
lb
/>
ſit ſpeculi, radius verò incidentię ſuper
<
lb
/>
ficiei
<
var
>.b.n.c.</
var
>
erit
<
var
>.b.n.</
var
>
cuius reflexus ſit
<
var
>.n.
<
lb
/>
a.</
var
>
radij autem alterius ſuperficiei erunt
<
lb
/>
<
var
>b.t.</
var
>
et
<
var
>.t.u</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4102
"
xml:space
="
preserve
">Imaginemur nunc duos ſemi
<
lb
/>
diametros
<
var
>.x.n.</
var
>
et
<
var
>.x.t.</
var
>
quæ angulos
<
var
>.b.n.
<
lb
/>
a.</
var
>
et
<
var
>.b.t.u.</
var
>
per æqualia diuidant ex ſup-
<
lb
/>
poſito.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4103
"
xml:space
="
preserve
">Nunc ijs ſuppoſitis, ſi vnam tantum-
<
lb
/>
modo obiecti imaginem videbimus, </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>