Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(338)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div642
"
type
="
section
"
level
="
3
"
n
="
28
">
<
div
xml:id
="
echoid-div650
"
type
="
letter
"
level
="
4
"
n
="
3
">
<
p
>
<
s
xml:id
="
echoid-s4103
"
xml:space
="
preserve
">
<
pb
o
="
338
"
rhead
="
IO. BAPT. BENED.
"
n
="
350
"
file
="
0350
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0350
"/>
clarum erit ex rationibus ſupradictis nos ipſam videre in
<
reg
norm
="
communi
"
type
="
context
">cõmuni</
reg
>
concurſu ipſorum
<
lb
/>
axium viſualium, qui axes cum reperiantur vnà cum ipſis radijs reflexis
<
var
>.n.a.</
var
>
et
<
var
>.t.u.</
var
>
<
lb
/>
ex neceſſitate ſeinuicem
<
reg
norm
="
ſecabunt
"
type
="
context
">ſecabũt</
reg
>
in catheto
<
var
>.b.c.</
var
>
cum extendantur in ipſis ſuperficie-
<
lb
/>
bus reflexionum, quæ ſuperficies nihil aliud commune inuicem habent, quam cathe
<
lb
/>
tum dictum
<
var
>.b.c.</
var
>
ſit igitur in puncto
<
var
>.d</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4104
"
xml:space
="
preserve
">Ex his dictis alia oritur neceſſitas, hoc eſt, quod quotieſcunque vnam tantummo
<
lb
/>
do imaginem obiecti
<
var
>.b.</
var
>
videmus, dato quod duæ ſuperficies reflexionis ſint, & non
<
lb
/>
vna tantum, tunc angulos
<
var
>.n.</
var
>
et
<
var
>.t.</
var
>
ſemper inuicem æquales eſſe oportebit. </
s
>
<
s
xml:id
="
echoid-s4105
"
xml:space
="
preserve
">Vnde ar-
<
lb
/>
cus
<
var
>.n.c.</
var
>
et
<
var
>.t.c.</
var
>
ex neceſſitate inuicem æquales erunt.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4106
"
xml:space
="
preserve
">Scimas enim ex .3. ſexti Euclid. quod eadem proportio erit ipſius
<
var
>.b.n.</
var
>
ad
<
var
>.n.
<
lb
/>
d.</
var
>
quę ipſius
<
var
>.b.x.</
var
>
ad
<
var
>.x.d.</
var
>
& ipſius
<
var
>.b.t.</
var
>
ad
<
var
>.t.d.</
var
>
ſimiliter, </
s
>
<
s
xml:id
="
echoid-s4107
"
xml:space
="
preserve
">quare ipſiusb
<
var
>.n.</
var
>
ad
<
var
>.n.
<
lb
/>
d.</
var
>
erit vt ipſius
<
var
>.b.t.</
var
>
ad
<
var
>.t.d</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4108
"
xml:space
="
preserve
">Vnde ſequitur
<
var
>.b.n.</
var
>
æqualem eſſe ipſi
<
var
>.b.t.</
var
>
et
<
var
>.n.d.</
var
>
<
lb
/>
ipſi
<
var
>.t.d.</
var
>
vt à medio circulo
<
var
>.E.</
var
>
potes videre, quamuis etiam
<
var
>.b.</
var
>
non eſſet extremum
<
lb
/>
diametri, ſed vbicunque volueris in ipſo diametro, vel
<
reg
norm
="
etiam
"
type
="
context
">etiã</
reg
>
protracta, eo quod pun-
<
lb
/>
ctum
<
var
>.n.</
var
>
& punctum
<
var
>.t.</
var
>
in eodem ſemicirculo, vel in æqualibus ſemicirculis, non
<
reg
norm
="
poſsent
"
type
="
context
">poſsẽt</
reg
>
<
lb
/>
aliter in ipſa circunferentia locari,
<
reg
norm
="
eandem
"
type
="
context
">eãdem</
reg
>
ſeruando proportionem
<
var
>.b.n.</
var
>
ad
<
var
>.n.d.</
var
>
vt
<
var
>.b.
<
lb
/>
t.</
var
>
ad
<
var
>.t.d.</
var
>
</
s
>
<
s
xml:id
="
echoid-s4109
"
xml:space
="
preserve
">propterea quod in omni alio ſitu exiſtente puncto
<
var
>.t.</
var
>
ipſa
<
var
>.b.t.</
var
>
eſſet aut maior
<
lb
/>
aut minor ipſa
<
var
>.b.n.</
var
>
et
<
var
>.t.d.</
var
>
aut minor, aut maior ipſa
<
var
>.t.d.</
var
>
ex .7. & 14. tertij Eucli. </
s
>
<
s
xml:id
="
echoid-s4110
"
xml:space
="
preserve
">vnde
<
lb
/>
aut maior, aut minor proportio eſſet ipſius
<
var
>.b.t.</
var
>
ad
<
var
>.t.d.</
var
>
quam ipſius
<
var
>.b.n.</
var
>
ad
<
var
>.n.d.</
var
>
& non
<
lb
/>
eadem.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4111
"
xml:space
="
preserve
">Nunc è conuerſo ſi
<
var
>.b.n.</
var
>
et
<
var
>.b.t.</
var
>
ſunt ſibi inuicem æquales, & ſic
<
var
>.n.d.</
var
>
cum
<
var
>.t.d.</
var
>
ſequi-
<
lb
/>
tur ex .8. primi Eucli. angulos
<
var
>.n.</
var
>
et
<
var
>.t.</
var
>
inuicem æquales eſſe.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4112
"
xml:space
="
preserve
">Ab ijſdem ſpeculationibus potes etiam videre vnde accidat quod partes ſuperio
<
lb
/>
res alicuius obiecti reflexæ à tali ſpeculo concauo videntur nobis inferiores eſſe, &
<
lb
/>
inferiores appareant ſuperiores, & dextræ ſiniſtræ, & ſiniſtræ dextræ. </
s
>
<
s
xml:id
="
echoid-s4113
"
xml:space
="
preserve
">quod autem
<
lb
/>
hucuſque demonſtraui de ſpeculis planis, & ſphæricis concauis, ratiocinare tu ijſdem
<
lb
/>
medijs circa ſphærica conuexa, vbi clarè videbis puncta huiuſmodi ſpeculi conuexi,
<
lb
/>
à quibus reflectitur imago obiecti ad ambos oculos, ſemper oportere æquidiſtantia
<
lb
/>
eſſe à
<
reg
norm
="
puncto
"
type
="
context
">pũcto</
reg
>
communi ipſius ſuperficiei ſpeculi, & catheto incidentiæ, dum unam tan
<
lb
/>
tummodo imaginem ipſius obiecti videmus, & à diuerſis ſuperficiebus reflexionum.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4114
"
xml:space
="
preserve
">Nolo etiam prætermittere, quod nunc mihi ſuccurrit, hoc eſt quod poſſet ali-
<
lb
/>
quis duos ſitus inuenire, vnum pro oculo, alterum verò pro obiecto, reſpectu alicu-
<
lb
/>
ius ſpeculi concaui, ſphęroidis prolatæ, vt reflexio ipſius obiecti videretur, vt linea
<
lb
/>
diuidens per æqualia ipſum ſpeculum. </
s
>
<
s
xml:id
="
echoid-s4115
"
xml:space
="
preserve
">Reſpectu verò alicuius ſpeculi concaui ſphæ-
<
lb
/>
roidis oblongæ, vt reflexio obiecti ad oculum veniret à tota ſuperficie ipſius ſpecu-
<
lb
/>
li, vnde tota ſuperficies ipſius ſpeculi videretur colorata illo colore cuius eſſet
<
lb
/>
obiectum, quæ quidem paſſiones
<
reg
norm
="
pendent
"
type
="
context
">pendẽt</
reg
>
à .48. tertij lib. ipſius Pergei, vt ex te ipſo fa
<
lb
/>
cile videre potes, propter æqualitatem angulorum reflexionis, & incidentiæ.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4116
"
xml:space
="
preserve
">Opinio autem mea, quam ſcire cupis de imagine obiecti reflexa, quam putas eſ-
<
lb
/>
ſe in ſuperficie ſpeculi, hæc eſt, quod nec in ſuperficie, nec ultra, nec citra eam eſt ip
<
lb
/>
ſa imago, quod autem vltra non ſit, hoc puto nulli dubium eſſe. </
s
>
<
s
xml:id
="
echoid-s4117
"
xml:space
="
preserve
">eadem etiam ra-
<
lb
/>
tione non erit citra ſuperficiem ſpeculi concaui, quamuis ipſam nos compræhenda-
<
lb
/>
mus in concurſu radiorum viſualium, tam ab vno ſpeculo quam ab alio reflexione
<
lb
/>
facta. </
s
>
<
s
xml:id
="
echoid-s4118
"
xml:space
="
preserve
">Sed quòd ipſa neque ſit in ipſa ſpeculi ſuperficie, manifeſtum erit ex hoc,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
<
lb
/>
duo ſpectantes in eodem ſpeculo, duas diuerſas imagines vident, tres,
<
reg
norm
="
autem
"
type
="
wordlist
">aũt</
reg
>
tres, qua-
<
lb
/>
tuor, quatuor, & ſic deinceps, vnde tot eſſent imagines ſupra ſuperficiem ſpeculi,
<
lb
/>
quot obiecta,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
tamen ita non eſt, nec plus eſt in vno loco ipſa imago, quam in alio, </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>