Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(366)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div708
"
type
="
section
"
level
="
3
"
n
="
36
">
<
div
xml:id
="
echoid-div710
"
type
="
letter
"
level
="
4
"
n
="
2
">
<
p
>
<
s
xml:id
="
echoid-s4369
"
xml:space
="
preserve
">
<
pb
o
="
366
"
rhead
="
IO. BAPT. BENED.
"
n
="
378
"
file
="
0378
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0378
"/>
proportionalis inter
<
var
>.g.</
var
>
et
<
var
>.h</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4370
"
xml:space
="
preserve
">quare
<
var
>.g.</
var
>
et
<
var
>.h.</
var
>
non erunt minimi in ea proportione, quia
<
lb
/>
vnitas diuiſibilis eſſet ſi
<
var
>.g.h.</
var
>
minimi fuiſſent, quod non conceditur, ſint igitur mini
<
lb
/>
mi in dicta proportione
<
var
>.a.</
var
>
et
<
var
>.b.</
var
>
quorum differentia erit vnitas, vt ſcis,
<
reg
norm
="
ſitque
"
type
="
simple
">ſitq́;</
reg
>
<
var
>.c.</
var
>
quadra
<
lb
/>
tum ipſius
<
var
>.g.</
var
>
et
<
var
>.d.</
var
>
quadratum ipſius
<
var
>.K</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4371
"
xml:space
="
preserve
">tunc clarum erit ex .11. octaui, quod propor-
<
lb
/>
tio ipſius c. ad
<
var
>.d.</
var
>
eadem erit quæ
<
var
>.g.</
var
>
ad
<
var
>.h.</
var
>
hoc eſt vt ipſius
<
var
>.a.</
var
>
ad
<
var
>.b.</
var
>
vnde ſi vnus termi.
<
lb
/>
norum
<
var
>.a.</
var
>
vel
<
var
>.b.</
var
>
eſſet quadratus, reliquus etiam quadratus eſſet ex .22. octaui, & ex
<
lb
/>
16. eiuſdem, inter
<
var
>.a.</
var
>
et
<
var
>.b.</
var
>
reperiretur aliquis medius numerus proportionalis, quod
<
lb
/>
fieri non poteſt ex hypotheſi, cum inter
<
var
>.a.</
var
>
et
<
var
>.b.</
var
>
nullus ſit numerus, quia differunt in
<
lb
/>
ter ſe per vnitatem tantummodo. </
s
>
<
s
xml:id
="
echoid-s4372
"
xml:space
="
preserve
">Nunc autem cum nullus numerorum
<
var
>.a.</
var
>
vel
<
var
>.b.</
var
>
qua
<
lb
/>
dratus ſit, ponatur quod
<
var
>.f.</
var
>
quadratus ſit ipſius
<
var
>.b.</
var
>
et
<
var
>.e.</
var
>
ſit productum ipſius
<
var
>.a.</
var
>
in
<
var
>.b.</
var
>
vn
<
lb
/>
de ex .18. ſeptimi, proportio ipſius
<
var
>.e.</
var
>
ad
<
var
>.f.</
var
>
erit vt. ipſius
<
var
>.a.</
var
>
ad
<
var
>.b.</
var
>
hoc eſt vt ipſius
<
var
>.c.</
var
>
ad
<
lb
/>
d. quapropter
<
var
>.e.</
var
>
erit quadratus ex .22. octaui, cuius latus tetragonicum eſſet
<
reg
norm
="
medium
"
type
="
context
">mediũ</
reg
>
<
lb
/>
proportionale inter
<
var
>.a.</
var
>
et
<
var
>.b.</
var
>
ex .20. ſeptimi, quod eſt impoſſibile, vt iam dixi, cum
<
var
>.a.</
var
>
<
lb
/>
et
<
var
>.b.</
var
>
ſint inui cem conſequentes, vnus poſt alium immediatè.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4373
"
xml:space
="
preserve
">Superius enim dixi hunc modum eſſe vniuerſalem,
<
lb
/>
hoc eſt quod hac methodo poſſumus in cognitionem
<
lb
/>
vcnire, quod non ſolum in duas æquales partes diui-
<
lb
/>
<
figure
xlink:label
="
fig-0378-01
"
xlink:href
="
fig-0378-01a
"
number
="
418
">
<
image
file
="
0378-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0378-01
"/>
</
figure
>
di non poſſit, ſed nec in tres, nec quatuor nec quot vo
<
lb
/>
lueris. </
s
>
<
s
xml:id
="
echoid-s4374
"
xml:space
="
preserve
">Primum enim quod non in tres diuidatur à te
<
lb
/>
ipſo cognoſces ope
<
reg
norm
="
cuborum
"
type
="
context
">cuborũ</
reg
>
vice
<
reg
norm
="
quadratorum
"
type
="
context
">quadratorũ</
reg
>
, opevero
<
lb
/>
<
reg
norm
="
cenſuum
"
type
="
context
">cenſuũ</
reg
>
<
reg
norm
="
cenſuum
"
type
="
context context
">cẽſuũ</
reg
>
, ve
<
unsure
/>
l qui cognouerit eam
<
reg
norm
="
proportionem
"
type
="
context
">proportionẽ</
reg
>
<
lb
/>
eſſe indiuiſibilem per æqualia, illicò etiam cognoſcet
<
lb
/>
indiuiſibilem eſſe per quatuor partes, ope verò pri-
<
lb
/>
morum relatorum, cognoſcet non eſſe diuiſibilem per
<
lb
/>
<
reg
norm
="
quinque
"
type
="
simple
">quinq;</
reg
>
partes, & ſic de cęteris, ſed mediantibus ijs
<
lb
/>
quas ſcripſi de iſtis dignitatibus in libro
<
reg
norm
="
Thęorematum
"
type
="
context
">Thęorematũ</
reg
>
<
lb
/>
arithmeticorum.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4375
"
xml:space
="
preserve
">Id autem quod Illuſtriſſimus Daniel Barbarus ſcri
<
lb
/>
bit in quinta parte ſuæ perſpectiuæ, ſi ſupra aliquo im
<
lb
/>
mobili, atque magno pariete facere volueris, te opor
<
lb
/>
tebit hoc ex reflexione radij ſolaris à ſpeculo plano
<
lb
/>
perficere.</
s
>
</
p
>
</
div
>
</
div
>
<
div
xml:id
="
echoid-div713
"
type
="
section
"
level
="
3
"
n
="
37
">
<
div
xml:id
="
echoid-div713
"
type
="
letter
"
level
="
4
"
n
="
1
">
<
head
xml:id
="
echoid-head540
"
xml:space
="
preserve
">DE INVENTIONE DIAMETRI
<
lb
/>
circuli circunſcribentis triangulum.</
head
>
<
head
xml:id
="
echoid-head541
"
style
="
it
"
xml:space
="
preserve
">Francbino Triuultio.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4376
"
xml:space
="
preserve
">
<
emph
style
="
sc
">QVod</
emph
>
mihi nunc proponis eſt triangulum, cuius baſis cum angulo ſibi op
<
lb
/>
poſito dantur. </
s
>
<
s
xml:id
="
echoid-s4377
"
xml:space
="
preserve
">
<
reg
norm
="
Vellesque
"
type
="
simple
">Vellesq́;</
reg
>
diametrum circuli apti eum triangulum circnn-
<
lb
/>
ſcribere inuenire in diſcreto.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4378
"
xml:space
="
preserve
">Sit igitur triangulum
<
var
>.a.b.g.</
var
>
cuius baſis
<
var
>.b.g.</
var
>
ſimul cum angulo
<
var
>.a.</
var
>
ei op-
<
lb
/>
poſito data ſit in numeris. </
s
>
<
s
xml:id
="
echoid-s4379
"
xml:space
="
preserve
">Imaginetur ergo circulas circunſeribens ipſum triangu-
<
lb
/>
lum
<
var
>.b.p.g.q.</
var
>
cuius diameter ſit
<
var
>.q.p.</
var
>
perpendicularis eius baſi
<
var
>.b.g.</
var
>
vnde
<
var
>.b.g.</
var
>
diuiſa
<
lb
/>
erit per æqualia ab ipſo diametro in puncto
<
var
>.m.</
var
>
per tertiam tertij, protrahatur etiam </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>