Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(376)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div730
"
type
="
section
"
level
="
3
"
n
="
41
">
<
div
xml:id
="
echoid-div730
"
type
="
letter
"
level
="
4
"
n
="
1
">
<
pb
o
="
376
"
rhead
="
IO. BABPT. BENED.
"
n
="
388
"
file
="
0388
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0388
"/>
<
p
>
<
s
xml:id
="
echoid-s4447
"
xml:space
="
preserve
">Poſſumus etiam probare quod periferia quadrati æqualis triangulo æquilatero
<
lb
/>
minor ſit periferia ipſius trianguli æquilateri. </
s
>
<
s
xml:id
="
echoid-s4448
"
xml:space
="
preserve
">Cogita triangulum æquilaterum hic
<
lb
/>
ſubſcriptum
<
var
>.d.l.q.</
var
>
cuius baſis
<
var
>.l.q.</
var
>
diuiſa ſit per æqualia à perpendiculari
<
var
>.d.o.</
var
>
<
reg
norm
="
deſcri- ptumque
"
type
="
context simple
">deſcri
<
lb
/>
ptũq́;</
reg
>
ſit rectangulum
<
var
>.o.g.</
var
>
quod æquale erit triangulo
<
var
>.d.l.q.</
var
>
ſed periferia trianguli
<
lb
/>
maior eſt periferia rectanguli, nam
<
var
>.l.q.</
var
>
æqualis eſt
<
var
>.o.q.</
var
>
cum
<
var
>.d.g.</
var
>
ſed
<
var
>.q.d.</
var
>
maior eſt
<
var
>.o.
<
lb
/>
d.</
var
>
ex .18. primi, vnde
<
var
>.l.d.</
var
>
maior etiam
<
var
>.q.g.</
var
>
cum ex .34. dicti latera oppoſita ipſius re
<
lb
/>
ctanguli ſint inuicem æqualia, accipiamus poſtea
<
var
>.e.c.</
var
>
æqualem
<
var
>.o.d.</
var
>
et
<
var
>.c.h.</
var
>
indire-
<
lb
/>
ctum æqualem
<
var
>.o.q.</
var
>
circa quem diametrum
<
var
>.e.h.</
var
>
intelligatur circulus
<
var
>.e.i.h.k.</
var
>
et. à pun
<
lb
/>
cto
<
var
>.c.</
var
>
dirigatur perpendicularis
<
var
>.k.i.</
var
>
ad
<
var
>.e.h.</
var
>
vnde ex .3. tertij
<
var
>.c.i.</
var
>
æqualis erit
<
var
>.c.k.</
var
>
& ex
<
lb
/>
34. quod fit ex
<
var
>.c.i.</
var
>
in
<
var
>.c.k.</
var
>
hoc eſt quadratum ipſius
<
var
>.c.i.</
var
>
æquale erit ei quod fit .ex
<
var
>.e.c.</
var
>
<
lb
/>
in
<
var
>.c.h.</
var
>
hoc eſt rectangulo
<
var
>.g.o.</
var
>
hoc eſt triangulo
<
var
>.d.l.q.</
var
>
ſed
<
var
>.e.h.</
var
>
eſt dimidium perife-
<
lb
/>
rię ipſius rectanguli
<
var
>.g.o.</
var
>
quæ minor eſt di midio periferiæ trianguli
<
var
>.d.l.q.</
var
>
vt vidimus
<
lb
/>
et
<
var
>.i.k.</
var
>
eſt dimidium periferię quadrati ipſius
<
var
>.i.c.</
var
>
& minor etiam ipſa
<
var
>.e.h.</
var
>
ex .14. tertij
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4449
"
xml:space
="
preserve
">quare verum eſt propoſitum.</
s
>
</
p
>
<
figure
position
="
here
"
number
="
429
">
<
image
file
="
0388-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0388-01
"/>
</
figure
>
<
p
>
<
s
xml:id
="
echoid-s4450
"
xml:space
="
preserve
">Sed quando periferiæ ſunt inuicem æquales, poſſumus etiam breuiter videre id
<
lb
/>
quod ſupradiximus, hoc eſt, quod quadratum, maius ſit triangulo æquilatero. </
s
>
<
s
xml:id
="
echoid-s4451
"
xml:space
="
preserve
">Nam
<
lb
/>
cum
<
var
>.b.g.</
var
>
ſeſquitertia ſit ad
<
var
>.b.a.</
var
>
ergo
<
var
>.b.g.</
var
>
erit vt .4. et
<
var
>.b.a.</
var
>
ut .3. vnde
<
var
>.b.q.</
var
>
erit vt .16
<
lb
/>
et
<
var
>.b.l.</
var
>
vt .9. et
<
var
>.c.q.</
var
>
vt .8. </
s
>
<
s
xml:id
="
echoid-s4452
"
xml:space
="
preserve
">quare
<
var
>.b.l.</
var
>
maius erit ipſo
<
reg
norm
="
rectangulo
"
type
="
context
">rectãgulo</
reg
>
<
var
>.c.q.</
var
>
ſed
<
var
>.c.q.</
var
>
maius eſt
<
reg
norm
="
triam
"
type
="
context
">triã</
reg
>
<
lb
/>
gulo
<
var
>.b.o.g.</
var
>
cum
<
var
>.q.g.</
var
>
quæ æqualis eſt
<
var
>.o.g.</
var
>
maior ſit
<
var
>.o.c.</
var
>
ex .18. vel penultima primi,
<
lb
/>
nam ſi
<
var
>.q.g.</
var
>
æqualis eſſet
<
var
>.o.c.</
var
>
</
s
>
<
s
xml:id
="
echoid-s4453
"
xml:space
="
preserve
">tunc
<
var
>.c.q.</
var
>
æqualis eſſet triangulo
<
var
>.b.o.g.</
var
>
ex .41. primi.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4454
"
xml:space
="
preserve
">Alia etiam via maiores noſtri vſi ſunt quæ generalis eſt vt in Theone ſupra Al-
<
lb
/>
mageſtum videre eſt, medijs perpendicularibus à centris ad latera figurarum, ſed
<
lb
/>
quia
<
reg
norm
="
differentia
"
type
="
context
">differẽtia</
reg
>
longitudinum ipſarum perpendicularium alio medio inueniri poteſt,
<
lb
/>
eo quo ipſi vſi ſunt, prætermittere nolo quin tibi ſcribam.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4455
"
xml:space
="
preserve
">Ego enim ita diſcurro.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4456
"
xml:space
="
preserve
">Sint duæ figuræ iſoperimetrę æquilaterę & æquiangulæ, puta primò trian-
<
lb
/>
gulum & quadratum quorum centra ſint
<
var
>.e.</
var
>
et
<
var
>.o.</
var
>
à quibus centris ad latera ſint per-
<
lb
/>
pendiculares
<
var
>.e.n.</
var
>
et
<
var
>.o.u.</
var
>
vnde
<
var
>.n.</
var
>
et
<
var
>.u.</
var
>
diuident latera per æqualia vt ſcis, ducantur
<
lb
/>
poſtea
<
var
>.e.t.</
var
>
et
<
var
>.o.a.</
var
>
ad angulos dictorum laterum, vnde habebimus angulum
<
var
>.o.a.u.</
var
>
<
reg
norm
="
di- midium
"
type
="
context
">di-
<
lb
/>
midiũ</
reg
>
recti, et
<
var
>.e.t.n.</
var
>
tertia pars vnius recti, vt ex te ipſo videre potes, </
s
>
<
s
xml:id
="
echoid-s4457
"
xml:space
="
preserve
">quare angulus </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>