Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(378)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div730
"
type
="
section
"
level
="
3
"
n
="
41
">
<
div
xml:id
="
echoid-div730
"
type
="
letter
"
level
="
4
"
n
="
1
">
<
pb
o
="
378
"
rhead
="
IO. BAPT. BENED.
"
n
="
390
"
file
="
0390
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0390
"/>
</
div
>
<
div
xml:id
="
echoid-div732
"
type
="
letter
"
level
="
4
"
n
="
2
">
<
head
xml:id
="
echoid-head556
"
style
="
it
"
xml:space
="
preserve
">De incommenſur abilitate, in longitudine perpendicu-
<
lb
/>
laris trianguli æquilateri cum eiuſdem latere.</
head
>
<
head
xml:id
="
echoid-head557
"
xml:space
="
preserve
">AD EVNDEM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4473
"
xml:space
="
preserve
">ID quod à me poſtulas eſt omnino impoſſibile, velles enim duos numeros inueni
<
lb
/>
re inter ſe ita ſe habentes, vt ſe habent perpendicularis in triangulo æquilatero
<
lb
/>
cum vno eius laterum, quod vero hoc fieri non poſſit, conſidera in figura præcedenti
<
lb
/>
triangulum æquilaterum
<
var
>.d.l.q.</
var
>
cuius perpendicularis ſit
<
var
>.d.o.</
var
>
quæ diuidit
<
var
>.l.q.</
var
>
per
<
lb
/>
æqualia in
<
var
>.o.</
var
>
vnde ex .4. ſecundi Euclidis, quadratum
<
var
>.l.q.</
var
>
(ideſt
<
var
>.d.q.</
var
>
) quadruplum
<
lb
/>
erit quadrato
<
var
>.o.q.</
var
>
& ex penultima primi ęquale quadratis
<
var
>.d.o.</
var
>
et
<
var
>.o.q.</
var
>
</
s
>
<
s
xml:id
="
echoid-s4474
"
xml:space
="
preserve
">quare erit ſeſ-
<
lb
/>
quitertium quadrato ipſius
<
var
>.d.o.</
var
>
& ita quadratum
<
var
>.d.o.</
var
>
erit triplum quadrato ipſius
<
var
>.
<
lb
/>
o.q.</
var
>
hæe autem proportiones non ſunt vt numeri quadrati ad numerum quadratum
<
lb
/>
quod ſi ita fuiſſent, ſequeretur ternarium numerum eſſe quadratum ex .22. octaui.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4475
"
xml:space
="
preserve
">Cum igitur non ſint vt numeri quadrati ad numerum quadratum, ſequitur ex ſepti-
<
lb
/>
ma decimi
<
var
>.d.o.</
var
>
eſſe incommenſurabilem ipſi
<
var
>.l.q.</
var
>
ſeu
<
var
>.d.q.</
var
>
in longitudine.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4476
"
xml:space
="
preserve
">Vel dicamus ita, proportio quadrati ipſius
<
var
>.l.q.</
var
>
ad quadratum ipſius
<
var
>.o.d.</
var
>
eſt in ge
<
lb
/>
nere ſuperparticulari, cum ſit ſeſquitertia, vnde quadratum ipſius
<
var
>.d.o.</
var
>
numeris da-
<
lb
/>
ri non poteſt, eo quod ſi dabilis fuiſſet, ſequeretur, quod inter quadratum ipſius. l
<
unsure
/>
<
var
>.
<
lb
/>
q.</
var
>
& ipſius
<
var
>.d.o.</
var
>
eſſet aliquis numerus medius proportionalis ex .16. octaui, vnde ex
<
lb
/>
octaua eiuſdem vnitas diuiſibilis eſſet, quod fieri non poteſt.</
s
>
</
p
>
<
figure
position
="
here
"
number
="
431
">
<
image
file
="
0390-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0390-01
"/>
</
figure
>
</
div
>
<
div
xml:id
="
echoid-div733
"
type
="
letter
"
level
="
4
"
n
="
3
">
<
head
xml:id
="
echoid-head558
"
style
="
it
"
xml:space
="
preserve
">De triangulo & Pentagono æquilatero</
head
>
<
head
xml:id
="
echoid-head559
"
xml:space
="
preserve
">AD EVNDEM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4477
"
xml:space
="
preserve
">MOdum quem conſideraui circa triangulum æquilaterum & pentagonum, vt
<
lb
/>
tibi ſignificaui ita ſe habet.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4478
"
xml:space
="
preserve
">Probandum primò eſt pentagonum altiorem eſſe triangulo ſibi iſoperimetro.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4479
"
xml:space
="
preserve
">Iam tibi notam puto proportionem lateris trianguli ad latus pentagoni eſſe vt .5.
<
lb
/>
ad .3.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4480
"
xml:space
="
preserve
">Sit igitur pentagonus
<
var
>.b.d.m.g.v.</
var
>
cuius periferia diſtenta ſit
<
var
>.K.z.</
var
>
baſis autem
<
var
>.m.
<
lb
/>
g.</
var
>
bifariam diuiſa ſit in puncto
<
var
>.a.</
var
>
<
reg
norm
="
ductaque
"
type
="
simple
">ductaq́;</
reg
>
<
var
>.a.b</
var
>
:
<
var
>b.g.</
var
>
et
<
var
>.b.m.</
var
>
clarum erit
<
var
>.a.b.</
var
>
perdicu-
<
lb
/>
larem eſſe ad
<
var
>.m.g.</
var
>
ex .8. primi Eucli. cum
<
var
>.b.m.</
var
>
et
<
var
>.b.g.</
var
>
(baſes triangulorum
<
var
>.b.d.m.</
var
>
</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>