Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(62)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div7
"
type
="
chapter
"
level
="
2
"
n
="
1
">
<
div
xml:id
="
echoid-div183
"
type
="
math:theorem
"
level
="
3
"
n
="
93
">
<
p
>
<
s
xml:id
="
echoid-s824
"
xml:space
="
preserve
">
<
pb
o
="
62
"
rhead
="
IO. BAPT. BENED.
"
n
="
74
"
file
="
0074
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0074
"/>
dendus, alter ex eodem detrahendus ſit, ex quo proferri debeant bina qua-
<
lb
/>
drata. </
s
>
<
s
xml:id
="
echoid-s825
"
xml:space
="
preserve
">
<
reg
norm
="
Itaque
"
type
="
simple
">Itaq;</
reg
>
numeri illi in ſummam collecti dabunt .17. differentiam minoris quadra
<
lb
/>
ti & maioris. </
s
>
<
s
xml:id
="
echoid-s826
"
xml:space
="
preserve
">I am ſi ex hoc .17. binas partes fecerimus, altera erit .8. altera .9. qui
<
lb
/>
bus in ſeipſis multiplicatis alterum quadratum erit .64. alterum .81. addito
<
reg
norm
="
itaque
"
type
="
simple
">itaq;</
reg
>
ipſi.
<
lb
/>
64. 11. aut .6. pro libito, propoſitum numerum conſequemur. </
s
>
<
s
xml:id
="
echoid-s827
"
xml:space
="
preserve
">cui addito .6. vel .11.
<
lb
/>
dabit nobis .81. vel ex ipſo detracto .11. vel .6. relinquet nobis 64. in pręſenti autem
<
lb
/>
exemplo talis numerus erit, aut .70. vel .75. </
s
>
<
s
xml:id
="
echoid-s828
"
xml:space
="
preserve
">Huius autem theorematis ſpeculatio
<
lb
/>
ex .90. dependet, quo demonſtratum fuit gnomonem proximè quadratum ſequen
<
lb
/>
tem, vnitate duplo radicis minorem eſſe.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div184
"
type
="
math:theorem
"
level
="
3
"
n
="
94
">
<
head
xml:id
="
echoid-head111
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
94
">XCIIII</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s829
"
xml:space
="
preserve
">CVR ſi quis cupiat ſummam progreſſionis arithmeticæ quam citiſſimè cogno
<
lb
/>
ſcere. </
s
>
<
s
xml:id
="
echoid-s830
"
xml:space
="
preserve
">Rectè coniunget vltimo termino vnitatem primum terminum, huius
<
lb
/>
poſtea vltimi termini dimidium cum numero terminorum multiplicabit, ex
<
lb
/>
quo multiplicationis productum, erit omnium propoſitorum terminorum ſumma,
<
lb
/>
aut eundem vltimum terminum iunctum primo, per dimidium numeri terminorum
<
lb
/>
multiplicabit. </
s
>
<
s
xml:id
="
echoid-s831
"
xml:space
="
preserve
">Nam idipſum eueniet.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s832
"
xml:space
="
preserve
">Exempli gratia, ſi proponerentur .17. termini in prima progreſſione arithmeti-
<
lb
/>
ca naturali, vltimus eſſet .17. cui coniuncta vnitate primo termino ſumma erit .18.
<
lb
/>
cuius dimidium cum numero terminorum, nempe .17. multiplicatum cum fuerit,
<
lb
/>
oritur productum .153. </
s
>
<
s
xml:id
="
echoid-s833
"
xml:space
="
preserve
">Idpſum eueniet, multiplicato dimidio numeri
<
reg
norm
="
terminorum
"
type
="
context
">terminorũ</
reg
>
<
lb
/>
per vltimum coniunctum vnitati primo termino.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s834
"
xml:space
="
preserve
">Quod vt ſciamus, cogitemus terminos progreſſionis collocari, vt in figura ſub-
<
lb
/>
ſcripta
<
var
>.a.o.n.</
var
>
collocantur,
<
reg
norm
="
tanquam
"
type
="
context
">tanquã</
reg
>
per gradus, ſumpto principio ab vnitate
<
var
>.n.</
var
>
tum
<
var
>.
<
lb
/>
u.t.</
var
>
atque ita gradatim. </
s
>
<
s
xml:id
="
echoid-s835
"
xml:space
="
preserve
">Sic cogitato abſoluto parallelogrammo
<
var
>.q.o.</
var
>
ſciemus aper-
<
lb
/>
tè ſummam progreſſionis tanto maiorem eſſe dimidio totius
<
reg
norm
="
parallelogrammi
"
type
="
context
">parallelogrãmi</
reg
>
, quan
<
lb
/>
tum dimidium numeri diametri
<
var
>.a.e.i.c.u.n.</
var
>
requirit. </
s
>
<
s
xml:id
="
echoid-s836
"
xml:space
="
preserve
">Nam cum parallelogram-
<
lb
/>
mum diuidatur à dl
<
unsure
/>
ametro in tres partes, diameter vnam occupat, reliquæ verò duę
<
lb
/>
ambientes diametrum inter ſe ſunt æquales. </
s
>
<
s
xml:id
="
echoid-s837
"
xml:space
="
preserve
">Sumpto
<
reg
norm
="
itaque
"
type
="
simple
">itaq;</
reg
>
diametro cum altera di
<
lb
/>
ctarum duarum partium, patet ſumi pluſquam
<
reg
norm
="
dimidium
"
type
="
context
">dimidiũ</
reg
>
totius
<
reg
norm
="
parallelogrammi
"
type
="
context
">parallelogrãmi</
reg
>
. </
s
>
<
s
xml:id
="
echoid-s838
"
xml:space
="
preserve
">pro
<
lb
/>
tanta portione, quantum eſt dimidiam occupatam à diametro, qui
<
reg
norm
="
cam
"
type
="
context
">cã</
reg
>
<
unsure
/>
ex diſcretis
<
lb
/>
reſpondentibus numero terminorum componatur, conſtat numero æquali eſſe di-
<
lb
/>
cto numero terminorum
<
var
>.o.n</
var
>
. </
s
>
<
s
xml:id
="
echoid-s839
"
xml:space
="
preserve
">Iam ſi quis multiplicet
<
var
>.a.o.</
var
>
per dimidium
<
var
>.o.n.</
var
>
procul
<
lb
/>
dubio, ex prima ſexti aut .18. ſeptimi, orietur
<
reg
norm
="
dimidium
"
type
="
context
">dimidiũ</
reg
>
numeri
<
reg
norm
="
parallelogrammi
"
type
="
context
">parallelogrãmi</
reg
>
<
var
>.q.o.</
var
>
<
lb
/>
quod minus erit ſumma progreſſionis dimidio numeri diametri, aut quod idem eſt
<
lb
/>
dimidio
<
var
>.o.n.</
var
>
ſed hoc dimidium
<
var
>.o.n.</
var
>
æquale eſt producto dimidij vnitatis
<
var
>.n.</
var
>
in
<
var
>.o.n.</
var
>
<
lb
/>
ex .20. ſeptimi, cum dimidium
<
var
>.o.n.</
var
>
ſit eius productum in
<
reg
norm
="
vnitatem
"
type
="
context
">vnitatẽ</
reg
>
. </
s
>
<
s
xml:id
="
echoid-s840
"
xml:space
="
preserve
">Itaque multipli-
<
lb
/>
cato
<
var
>.n.o.</
var
>
per dimidium
<
var
>.o.a.</
var
>
coniunctum dimidio vnitatis
<
var
>.n.</
var
>
oritur ſumma quæſita
<
lb
/>
propoſitæ progreſſionis. </
s
>
<
s
xml:id
="
echoid-s841
"
xml:space
="
preserve
">Idipſum accidet multiplicata ſumma
<
var
>.o.a.</
var
>
& vnitate
<
var
>.n.</
var
>
<
reg
norm
="
per
"
type
="
simple
">ꝑ</
reg
>
<
lb
/>
dimidium
<
var
>.o.n.</
var
>
ex .20. ſeptimi, cum proportio totius ad totum eadem ſit, quæ dimi
<
lb
/>
dijad dimidium, ex cauſa permutationalitatis. </
s
>
<
s
xml:id
="
echoid-s842
"
xml:space
="
preserve
">Patet etiam in progreſſionibus,
<
lb
/>
quæ ab vnitate initium ducunt, ſi fiat aſcenſus per binarium ſumma vltimi termini
<
lb
/>
cum primo ſemper duplam futuram eſſe numero terminorum, quod ſequentes figu </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>