Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(102)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div7
"
type
="
chapter
"
level
="
2
"
n
="
1
">
<
div
xml:id
="
echoid-div291
"
type
="
math:theorem
"
level
="
3
"
n
="
153
">
<
p
>
<
pb
o
="
102
"
rhead
="
IO. BAPT. BENED.
"
n
="
114
"
file
="
0114
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0114
"/>
<
s
xml:id
="
echoid-s1325
"
xml:space
="
preserve
">Quapropter non tacebo quod mihi in mentem venit circa hoc problema.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1326
"
xml:space
="
preserve
">Sit ergo linea
<
var
>.a.b.</
var
>
diuiſibilis in puncto
<
var
>.c.</
var
>
ita vt cubum totius dictæ
<
var
>.a.b.</
var
>
lineæ ad
<
lb
/>
ſummam cuborum
<
reg
norm
="
ſuarum
"
type
="
context
">ſuarũ</
reg
>
partium
<
var
>.a.c.</
var
>
et
<
var
>.c.b.</
var
>
oporteat eam proportionem
<
reg
norm
="
habere
"
type
="
conjecture
">habére</
reg
>
,
<
lb
/>
exempli gratia, vt .125. ad .65. vt vitemus fracta pro nunc, notantes talem propor-
<
lb
/>
tionem quadrupla nunquam maiorem eſſe poſſe, vt quilibet ex ſe contemplari po-
<
lb
/>
teſt, conſtituendo punctum
<
var
>.c.</
var
>
in medio loco inter
<
var
>.a.</
var
>
et
<
var
>.b.</
var
>
vnde proportio totalis
<
lb
/>
cubi ad ſummam partialium eſſet omnium maxima quæ poſſint eſſe, collocando
<
var
>.c.</
var
>
<
lb
/>
vbi volueris in dicta linea
<
var
>.a.b.</
var
>
& hæc eſſet quadrupla.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1327
"
xml:space
="
preserve
">Sed vt ad propoſitum reuertamur, conſiderabimus cubum totalem ipſius
<
var
>.a.b.</
var
>
<
lb
/>
eſſe vt .125. & ſummam partialium vt .65. quam detrahemus ex cubo totali & nobis
<
lb
/>
remanebit .60. pro ſumma trium ſolidorum inuicem æqualium, quorum longitu-
<
lb
/>
do vniuſcuiuſque erit tota linea
<
var
>.a.b.</
var
>
nobis cognita vt radix dati cubi totalis, quæ erit
<
lb
/>
in hoc exemplo quinque partium, latitudo verò vniuſcuiuſque dictorum
<
reg
norm
="
ſolidorum
"
type
="
context
">ſolidorũ</
reg
>
<
lb
/>
erit
<
var
>.a.c.</
var
>
pars maior ipſius
<
var
>.a.b.</
var
>
quæ quidem
<
var
>.a.c.</
var
>
adhuc nobis ignota eſt, profunditas
<
lb
/>
ſeu altitudo vniuſcuiuſque illorum ſolidorum, erit
<
var
>.c.b.</
var
>
pars reliqua ipſius
<
var
>.a.b.</
var
>
&
<
reg
norm
="
etiam
"
type
="
context
">etiã</
reg
>
<
lb
/>
nobis incognita, ſed quia ſumma horum trium ſolidorum nobis manifeſta ſuperius
<
lb
/>
fuit, quæ erat .60. propterà nobis cognita erit quantitas vniuſcuiuſque illorum ſoli-
<
lb
/>
dorum, vt tertia pars totius ſummæ ipſorum quæ erit .20. in propoſito
<
reg
norm
="
exemplo
"
type
="
context
">exẽplo</
reg
>
, dein
<
lb
/>
de cum vnumquodque illorum ſolidorum producatur à ſuperficie contenta ſeu pro
<
lb
/>
ducta ab
<
var
>.c.a.</
var
>
in
<
var
>.c.b.</
var
>
in tota linea
<
var
>.a.b.</
var
>
ſequitur quòd ſi diuiſerimus hoc ſolidum .20.
<
lb
/>
per lineam
<
var
>.a.b.</
var
>
quinque partium proueniet nobis cognita ſuperficies producta ab
<
var
>.
<
lb
/>
a.c.</
var
>
in
<
var
>.c.b.</
var
>
quatuor partium, ſed cum quadratum totius
<
var
>.a.b.</
var
>
nobis cognitum ſit, eo
<
lb
/>
quod
<
var
>.a.b.</
var
>
vt eius latus etiam cognitum eſt. </
s
>
<
s
xml:id
="
echoid-s1328
"
xml:space
="
preserve
">Tunc dictum quadratum erit .25. quod
<
lb
/>
quidem æquale eſt quadruplo illius quod fit ex
<
var
>.a.c.</
var
>
in
<
var
>.c.b.</
var
>
ſimul cum quadrato diffe
<
lb
/>
rentiæ inter
<
var
>.a.c.</
var
>
et
<
var
>.c.b.</
var
>
per .8. ſecundi Eucli. </
s
>
<
s
xml:id
="
echoid-s1329
"
xml:space
="
preserve
">Vnde quia quadruplum illius quod fit
<
lb
/>
ex
<
var
>.a.c.</
var
>
in
<
var
>.c.b.</
var
>
nobis cognitum eſt, vt
<
lb
/>
16. eo quod ſimplum quod eſt .4.
<
reg
norm
="
iam
"
type
="
context
">iã</
reg
>
<
lb
/>
<
figure
xlink:label
="
fig-0114-01
"
xlink:href
="
fig-0114-01a
"
number
="
157
">
<
image
file
="
0114-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0114-01
"/>
</
figure
>
inuentum fuit, ideo ſi hoc quadru-
<
lb
/>
plum .16. demptum fuerit ex totali
<
lb
/>
quadrato .25. reliquum erit .9. qua
<
lb
/>
<
reg
norm
="
dratum
"
type
="
context
">dratũ</
reg
>
ſcilicet vnius partis
<
var
>.a.c.</
var
>
ipſius
<
lb
/>
hoc eſt illius partis, quæ differentia
<
lb
/>
eſt inter
<
var
>a.c.</
var
>
et
<
var
>.c.b.</
var
>
quæ quidem erit
<
num
value
="
3
">.
<
lb
/>
3.</
num
>
partium quæ differentia cum ſub-
<
lb
/>
tracta fuerit ex
<
var
>.a.b.</
var
>
reliquum erit du
<
lb
/>
plum ipſius
<
var
>.c.b.</
var
>
duo ſcilicet. </
s
>
<
s
xml:id
="
echoid-s1330
"
xml:space
="
preserve
">Quare
<
var
>.
<
lb
/>
c.b.</
var
>
erit vt
<
var
>.I.</
var
>
et
<
var
>.a.c.</
var
>
vt .4. & productum
<
var
>.a.c.</
var
>
in
<
var
>.c.b.</
var
>
erit .4. vnitatum ſuperficialium.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1331
"
xml:space
="
preserve
">& c.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>