Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(140)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div308
"
type
="
chapter
"
level
="
2
"
n
="
2
">
<
div
xml:id
="
echoid-div333
"
type
="
section
"
level
="
3
"
n
="
14
">
<
pb
o
="
140
"
rhead
="
IO. BAPT. BENED.
"
n
="
152
"
file
="
0152
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0152
"/>
<
p
>
<
s
xml:id
="
echoid-s1686
"
xml:space
="
preserve
">Ponamus nunc quadratum lateris
<
var
>.a.u.</
var
>
eſſe .12. clarum erit quodlibet quadratum
<
lb
/>
aliorum duorum laterum
<
var
>.a.q.</
var
>
et
<
var
>.u.q.</
var
>
futurum nouem, ex ijs quæ poſteriore loco dixi
<
lb
/>
mus, & quia quadratum ipſius
<
var
>.q.a.</
var
>
eſt tantò minus aliorum duorum quadratorum
<
lb
/>
ſumma, quantum eſt duplum producti ipſius
<
var
>.q.a.</
var
>
in
<
var
>.a.o.</
var
>
ex .13. ſecundi, ſed alia duo
<
lb
/>
quadrata ſimul collecta faciunt .21. à quo numero ſubtrahendo quadratum ipſius
<
var
>.a.
<
lb
/>
q.</
var
>
ideſt nouem, remanebit numerus .12. pro duplo producti ipſius
<
var
>.q.a.</
var
>
in
<
var
>.a.o.</
var
>
cuius
<
lb
/>
dupli me-
<
lb
/>
<
figure
xlink:label
="
fig-0152-01
"
xlink:href
="
fig-0152-01a
"
number
="
207
">
<
image
file
="
0152-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0152-01
"/>
</
figure
>
dia pars, id-
<
lb
/>
eſt ſimplex
<
lb
/>
productum
<
lb
/>
ipſius
<
var
>.q.a.</
var
>
<
lb
/>
<
reg
norm
="
in
"
type
="
wordlist
">ĩ</
reg
>
<
var
>a.o.</
var
>
erit 6.
<
lb
/>
Sed
<
reg
norm
="
quia
"
type
="
simple
">ꝗa</
reg
>
qua
<
lb
/>
dratum ip-
<
lb
/>
ſius
<
var
>.q.a.</
var
>
eſt
<
lb
/>
nouem,
<
lb
/>
eius radix
<
var
>.
<
lb
/>
q.a.</
var
>
crit .3.
<
lb
/>
per
<
reg
norm
="
quam
"
type
="
context
">quã</
reg
>
di-
<
lb
/>
uidendo .6.
<
lb
/>
productum
<
lb
/>
ipſius
<
var
>.q.a.</
var
>
<
lb
/>
in
<
var
>.a.o.</
var
>
pro
<
lb
/>
latere
<
var
>.a.o.</
var
>
<
lb
/>
conſurgent
<
lb
/>
duo, cum er
<
lb
/>
go
<
var
>.a.o.</
var
>
ſint
<
lb
/>
duo tertia
<
lb
/>
ipſius
<
var
>.a.q.</
var
>
<
lb
/>
certi
<
reg
norm
="
erimus
"
type
="
simple
">erimꝰ</
reg
>
<
lb
/>
<
var
>a.o.</
var
>
eſſe latus dicti exagoni.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div337
"
type
="
section
"
level
="
3
"
n
="
15
">
<
head
xml:id
="
echoid-head193
"
xml:space
="
preserve
">CAP. XV.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1687
"
xml:space
="
preserve
">
<
reg
norm
="
DEſiderantes
"
type
="
context
">DEſiderãtes</
reg
>
ſcire deinde
<
var
>.l.k.</
var
>
in figura
<
var
>.M.</
var
>
quar
<
lb
/>
<
figure
xlink:label
="
fig-0152-02
"
xlink:href
="
fig-0152-02a
"
number
="
208
">
<
image
file
="
0152-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0152-02
"/>
</
figure
>
ti cap. tertiæ partis perſpectiuę Danielis
<
lb
/>
Barbari, ſeu Zamberti, eſſe veram
<
reg
norm
="
altitudinem
"
type
="
context
">altitudinẽ</
reg
>
cor-
<
lb
/>
poris octoaedri,
<
reg
norm
="
primum
"
type
="
context
">primũ</
reg
>
ſcire debemus
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
<
reg
norm
="
exiſtente
"
type
="
context
">exiſtẽte</
reg
>
<
var
>.b.
<
lb
/>
h.</
var
>
vt
<
reg
norm
="
etiam
"
type
="
context
">etiã</
reg
>
<
var
>.b.l.</
var
>
tripla ad
<
var
>.b.k.</
var
>
vt ex ijs, quę ſuperius
<
reg
norm
="
iam
"
type
="
context
">iã</
reg
>
<
lb
/>
diximus, facile percipi poteſt; </
s
>
<
s
xml:id
="
echoid-s1688
"
xml:space
="
preserve
">ex penultima primi
<
var
>.
<
lb
/>
b.l.</
var
>
in potentia, ſeſquioctaua erit ad
<
var
>.k.l.</
var
>
ipſa et
<
var
>.k.
<
lb
/>
l.</
var
>
dupla
<
reg
norm
="
inpotentia
"
type
="
context
">inpotẽtia</
reg
>
ad
<
var
>.h.k.</
var
>
& ob id ducta
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
eſſet
<
var
>.h.
<
lb
/>
l.</
var
>
exiſteret in potentia tripla ad
<
var
>.h.k.</
var
>
& ſeſquialtera
<
lb
/>
ad
<
var
>.l.k.</
var
>
& ſeſquitertia ad
<
var
>.l.b.</
var
>
& ſic ad
<
var
>.h.b.</
var
>
vnde
<
var
>.l.h.</
var
>
<
lb
/>
æqualis eſſet vni ex lateribus
<
reg
norm
="
trianguli
"
type
="
context
">triãguli</
reg
>
ęquilateri di-
<
lb
/>
cti corporis. </
s
>
<
s
xml:id
="
echoid-s1689
"
xml:space
="
preserve
">Ex rationibus igitur ſuperius hîc poſi-
<
lb
/>
tis
<
var
>.l.k.</
var
>
erit altitudo dicta, id eſt diſtantia inter duas
<
lb
/>
facies inuicem oppoſitas, octoaedri.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1690
"
xml:space
="
preserve
">
<
reg
norm
="
Neque
"
type
="
simple
">Neq;</
reg
>
volo te ignorare
<
reg
norm
="
alium
"
type
="
context
">aliũ</
reg
>
<
reg
norm
="
non
"
type
="
context
">nõ</
reg
>
<
reg
norm
="
paruum
"
type
="
context
">paruũ</
reg
>
fuiſſe
<
reg
norm
="
errorem
"
type
="
context
">errorẽ</
reg
>
<
lb
/>
illius Zamberti: </
s
>
<
s
xml:id
="
echoid-s1691
"
xml:space
="
preserve
">cum
<
reg
norm
="
eodem
"
type
="
context
">eodẽ</
reg
>
capite affirmet angulos
<
lb
/>
octoacdri rectos eſſe
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
ſint acuti,
<
reg
norm
="
nam
"
type
="
context
">nã</
reg
>
<
reg
norm
="
vnuſquiſque
"
type
="
simple
">vnuſquiſq;</
reg
>
minor eſt angulo cubi ſolido.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>