Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(142)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div340
"
type
="
chapter
"
level
="
2
"
n
="
3
">
<
div
xml:id
="
echoid-div340
"
type
="
section
"
level
="
3
"
n
="
1
">
<
p
>
<
s
xml:id
="
echoid-s1705
"
xml:space
="
preserve
">
<
pb
o
="
142
"
rhead
="
IO. BAPT. BENED.
"
n
="
154
"
file
="
0154
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0154
"/>
quetur dictum pondus grauius futurum pro parte
<
var
>.F.C.</
var
>
quam pro ea, quæ eſt
<
var
>.A.F.</
var
>
&
<
lb
/>
minus ſupra centrum
<
var
>.B.</
var
>
pro dicta parte
<
var
>.F.C.</
var
>
quam pro parte
<
var
>.A.F.</
var
>
quieturum; </
s
>
<
s
xml:id
="
echoid-s1706
"
xml:space
="
preserve
">&
<
lb
/>
dictum brachium quanto magis orizontale erit à ſitu
<
var
>.B.F.</
var
>
tantò minus-ſupra dictum
<
lb
/>
centrum
<
var
>.B.</
var
>
quieſcet, & hac ratione grauius quoque erit, & quanto magis vicinum
<
lb
/>
erit ipſi
<
var
>.A.</
var
>
à dicto
<
var
>.F.</
var
>
tantò magis ſuper centrum
<
var
>.B.</
var
>
quoque quieſcet, vnde
<
reg
norm
="
tantò
"
type
="
context
">tãtò</
reg
>
quo-
<
lb
/>
que leuius exiſtet. </
s
>
<
s
xml:id
="
echoid-s1707
"
xml:space
="
preserve
">Idem dico de omni ſitu brachij per girum inferiorem
<
var
>.C.Q.</
var
>
vbi
<
lb
/>
pondus pendebit à centro
<
var
>.B.</
var
>
dictum centrum attrahendo, quemadmodum ſuperius
<
lb
/>
illud impellebat. </
s
>
<
s
xml:id
="
echoid-s1708
"
xml:space
="
preserve
">Hæc verò omnia cap. ſequenti melius percipientur.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div342
"
type
="
section
"
level
="
3
"
n
="
2
">
<
head
xml:id
="
echoid-head197
"
style
="
it
"
xml:space
="
preserve
">De proportione ponderis extremitatis brachij libr &
<
lb
/>
in diuerſo ſitu ab orizontali.</
head
>
<
head
xml:id
="
echoid-head198
"
xml:space
="
preserve
">CAP. II.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1709
"
xml:space
="
preserve
">
<
emph
style
="
sc
">PRoportio</
emph
>
ponderis in
<
var
>.C.</
var
>
ad idem pondus in F. erit quemadmodum totius
<
lb
/>
brachij
<
var
>.B.C.</
var
>
ad partem
<
var
>.B.u.</
var
>
poſitam inter centrum & lineam
<
var
>.F.u.M.</
var
>
inclinatio-
<
lb
/>
nis, quam pondus ab extremitate
<
var
>.F.</
var
>
liberum verſus mundi
<
reg
norm
="
centrum
"
type
="
context
">centrũ</
reg
>
conficeret. </
s
>
<
s
xml:id
="
echoid-s1710
"
xml:space
="
preserve
">Quod
<
lb
/>
vt facilius intelligamus imaginemur
<
reg
norm
="
alterum
"
type
="
context
">alterũ</
reg
>
brachium libræ
<
var
>.B.D.</
var
>
& in extremo
<
var
>.D.</
var
>
<
lb
/>
locatum aliquod pondus minus pondere
<
var
>.C.</
var
>
vt
<
var
>.B.u.</
var
>
pars
<
var
>.B.C.m.</
var
>
nor eſt
<
var
>.B.D.</
var
>
cla-
<
lb
/>
rè cognoſcetur ex .6. lib. primi de ponderibus Archimedis, quòd ſi in puncto
<
var
>.u.</
var
>
col-
<
lb
/>
locatum erit pondus ipſius
<
var
>.C.</
var
>
libra nihil penitus à ſitu orizontali dimouebitur. </
s
>
<
s
xml:id
="
echoid-s1711
"
xml:space
="
preserve
">Sed
<
lb
/>
perinde eſt quòd pondus
<
var
>.F.</
var
>
æquale
<
var
>.C.</
var
>
ſit in extremo
<
var
>.F.</
var
>
in ſitu brachij
<
var
>.B.F.</
var
>
<
reg
norm
="
quam
"
type
="
context
">quã</
reg
>
vt ſit
<
lb
/>
in puncto
<
var
>.u.</
var
>
in ſitu ipſius
<
var
>.B.u.</
var
>
orizontali. </
s
>
<
s
xml:id
="
echoid-s1712
"
xml:space
="
preserve
">Ad cuius rei euidentiam imaginemur
<
reg
norm
="
filum
"
type
="
context
">filũ</
reg
>
<
var
>.
<
lb
/>
F.u.</
var
>
perpendiculare, & in cuius extremo
<
var
>.u.</
var
>
pendere pondus, quod erat in
<
var
>.F.</
var
>
vnde cla
<
lb
/>
rum erit quòd eundem effectum gignet, ac ſi fuiſſet in
<
var
>.F.</
var
>
quod, vt iam diximus re-
<
lb
/>
manens affixum puncto
<
var
>.u.</
var
>
brachij
<
var
>.B.u.</
var
>
tantò minus graue eſt ſitu ipſius
<
var
>.C.</
var
>
quantò
<
var
>.u.
<
lb
/>
B.</
var
>
minus eſt ipſo
<
var
>.B.C</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1713
"
xml:space
="
preserve
">Idem aſſero ſi brachium eſſet in ſitu
<
var
>.e.B.</
var
>
quod facilè cogno-
<
lb
/>
ſcere poterimus, ſi imaginemur filum appenſum ipſi
<
var
>.u.</
var
>
brachij
<
var
>.B.C.</
var
>
& vſque ad
<
var
>.e.</
var
>
<
lb
/>
<
reg
norm
="
perpendicularem
"
type
="
context
">perpendicularẽ</
reg
>
, in quo extremo
<
reg
norm
="
appensum
"
type
="
context
">appensũ</
reg
>
eſſet pondus æquale ponderi
<
var
>.C.</
var
>
&
<
reg
norm
="
liberum
"
type
="
context
">liberũ</
reg
>
<
lb
/>
ab
<
var
>.e.</
var
>
brachij
<
var
>.B.e.</
var
>
vnde libra orizontalis manebit. </
s
>
<
s
xml:id
="
echoid-s1714
"
xml:space
="
preserve
">Sed ſi brachium
<
var
>.B.e.</
var
>
conſolida-
<
lb
/>
tum fuiſſet in tali ſitu cum orizontali
<
var
>.B.D.</
var
>
<
lb
/>
<
figure
xlink:label
="
fig-0154-01
"
xlink:href
="
fig-0154-01a
"
number
="
210
">
<
image
file
="
0154-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0154-01
"/>
</
figure
>
&
<
reg
norm
="
appenſo
"
type
="
context
">appẽſo</
reg
>
<
reg
norm
="
pondere
"
type
="
context
">põdere</
reg
>
<
var
>.C.</
var
>
in
<
var
>.e.</
var
>
libero à filo, nec
<
lb
/>
<
reg
norm
="
aſcenderet
"
type
="
context
">aſcẽderet</
reg
>
,
<
reg
norm
="
neque
"
type
="
simple
">neq;</
reg
>
deſcenderet. </
s
>
<
s
xml:id
="
echoid-s1715
"
xml:space
="
preserve
">quia tantum
<
lb
/>
eſt quod ipſum ſit appenſum filo,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
pendet
<
lb
/>
ab
<
var
>.u.</
var
>
quantum quòd ab ipſo liberum
<
reg
norm
="
appem
"
type
="
context
">appẽ</
reg
>
<
lb
/>
nſum fuiſſet
<
var
>.e.</
var
>
brachij
<
var
>.B.e.</
var
>
& hoc procede
<
lb
/>
ret ab eo quòd partim pendereta centro
<
var
>.
<
lb
/>
B.</
var
>
& ſi
<
reg
norm
="
brachium
"
type
="
context
">brachiũ</
reg
>
eſſet in ſitu
<
var
>.B.Q.</
var
>
totum
<
reg
norm
="
pon
"
type
="
context
">põ</
reg
>
<
lb
/>
dus centro
<
var
>.B.</
var
>
remaneret appenſum,
<
reg
norm
="
quem- admodum
"
type
="
context
">quem-
<
lb
/>
admodũ</
reg
>
in ſitu
<
var
>.B.A.</
var
>
<
reg
norm
="
totum
"
type
="
context
">totũ</
reg
>
dicto centro an-
<
lb
/>
niteretur. </
s
>
<
s
xml:id
="
echoid-s1716
"
xml:space
="
preserve
">vnde fit vt hoc modo pondus
<
lb
/>
magis aut minus ſit graue, quò magis
<
lb
/>
aut minus à centro pendet, aut eidem niti-
<
lb
/>
tur: </
s
>
<
s
xml:id
="
echoid-s1717
"
xml:space
="
preserve
">
<
reg
norm
="
atque
"
type
="
simple
">atq;</
reg
>
hæc eſt cauſa proxima, & per ſe,
<
lb
/>
<
handwritten
xlink:label
="
hd-0154-01
"
xlink:href
="
hd-0154-01a
"
number
="
2
"/>
qua fit vt vnum
<
reg
norm
="
idemque
"
type
="
simple
">idemq;</
reg
>
pondus in vno eo-
<
lb
/>
<
reg
norm
="
demque
"
type
="
simple
">demq́;</
reg
>
medio magis aut minus graue exi- </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>