Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(266)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div518
"
type
="
section
"
level
="
3
"
n
="
8
">
<
div
xml:id
="
echoid-div524
"
type
="
letter
"
level
="
4
"
n
="
3
">
<
p
>
<
s
xml:id
="
echoid-s3320
"
xml:space
="
preserve
">
<
pb
o
="
266
"
rhead
="
IO. BABPT. BENED.
"
n
="
278
"
file
="
0278
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0278
"/>
ſis verò eadem quæ eſt portionis, cuius diameter eſt
<
var
>.n.u.</
var
>
ex .9. 12. Eucli. & ex .42. id-
<
lb
/>
eſt vltima primi Archimedis de ſphæra, & cyllindro.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3321
"
xml:space
="
preserve
">Nunc autem ex hoc aggregato iam vltimo dicto detrahatur conus, cuius
<
var
>.o.a.</
var
>
eſt
<
lb
/>
axis et
<
var
>.n.u.</
var
>
diameter baſis, qui quidem conus nobis cognitus eſt, cum
<
var
>.a.n.</
var
>
ſemidia-
<
lb
/>
meter eius baſis, nobis cognita ſit ex .34. 3. Eucli. </
s
>
<
s
xml:id
="
echoid-s3322
"
xml:space
="
preserve
">& ſic quantitas eius baſis, & ita ter-
<
lb
/>
tia pars
<
var
>.a.o.</
var
>
eius axis, quę multiplicata cum dicta baſi, cuius
<
var
>.n.u.</
var
>
eſt diameter, produ
<
lb
/>
cit dictum conum, qui quidem conus, vt diximus, demptus cum fuerit ex dicto ag-
<
lb
/>
gre gato, relinquet nobis ſoliditatem portionis
<
var
>.n.e.u.</
var
>
vnde cognoſcemus proportio
<
lb
/>
nem iſtius portionis ad totam ſphæram propoſitam.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3323
"
xml:space
="
preserve
">Sed cum nobis propoſita ſit proportio portionis
<
var
>.n.e.u.</
var
>
ad portionem
<
var
>.i.e.t.</
var
>
cogno
<
lb
/>
ſcemus etiam ſoliditatem huius ſecundę portionis
<
var
>.i.e.t.</
var
>
& ſimiliter
<
reg
norm
="
proportionem
"
type
="
context
">proportionẽ</
reg
>
hu-
<
lb
/>
ius ad totam ſphęram, & ad
<
reg
norm
="
reſiduum
"
type
="
context
">reſiduũ</
reg
>
<
reg
norm
="
etiam
"
type
="
context
">etiã</
reg
>
ipſius ſphęrę hoc eſt portioni
<
var
>.i.c.t</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3324
"
xml:space
="
preserve
">Protrahatur nunc diameter
<
var
>.c.e.</
var
>
à parte
<
var
>.e.</
var
>
<
reg
norm
="
vſque
"
type
="
simple
">vſq;</
reg
>
quo
<
var
>.e.f.</
var
>
æqualis ſit
<
var
>.e.o.</
var
>
ſemidiame
<
lb
/>
tro ſphęrę, quæ quidem
<
var
>.f.e.</
var
>
diuidatur in puncto
<
var
>.h.</
var
>
ita vt proportio
<
var
>.f.h.</
var
>
ad
<
var
>.h.e.</
var
>
æqua-
<
lb
/>
lis ſit proportioni portionis
<
var
>.i.c.t.</
var
>
ad portionem
<
var
>.i.e.t.</
var
>
quod quidem hoc modo efficie
<
lb
/>
tur. </
s
>
<
s
xml:id
="
echoid-s3325
"
xml:space
="
preserve
">applicabimus lineam
<
var
>.f.q.</
var
>
(indeterminatam) cum
<
var
>.f.e.</
var
>
ad quemuis angulum in
<
reg
norm
="
pun- cto
"
type
="
context
">pũ-
<
lb
/>
cto</
reg
>
<
var
>.f.</
var
>
in qua accipiemus duas lineas
<
var
>.f.p.</
var
>
et
<
var
>p.q.</
var
>
inuicem ita relatas, vt ſe habent in pro
<
lb
/>
portione duæ iam dictæ portiones, hoc eſt, vt
<
var
>.i.c.t.</
var
>
portio ad portionem
<
var
>.i.e.t.</
var
>
ducen
<
lb
/>
do poſtea
<
var
>.q.e.</
var
>
et
<
var
>.p.h.</
var
>
parallelam ad ipſam
<
var
>.q.e.</
var
>
diuiſam habebimus
<
var
>.f.e.</
var
>
in eadem pro
<
lb
/>
portione vt dictum eſt ex .2. ſexti, & .11 quinti Euclidis, vnde
<
var
>.c.e</
var
>
:
<
var
>e.f.</
var
>
et
<
var
>.f.h.</
var
>
nobis co
<
lb
/>
gnitę erunt.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3326
"
xml:space
="
preserve
">Oportebit nos nunc cognoſcere quantitatem
<
var
>.c.x.</
var
>
hoc modo, videlicet, quęramus
<
lb
/>
quadratum, cuius
<
var
>.c.x.</
var
>
eius ſit radix, cui quadratum lineę
<
var
>.c.e.</
var
>
cognitum, ita ſit propor-
<
lb
/>
tionatum, vt eſt linea
<
var
>.x.f.</
var
>
ad lineam
<
var
>.f.h.</
var
>
quę nobis cognita eſt, quod rectè factum erit
<
lb
/>
ex eo, quod ſcripſit Archimedes in .4. ſecundi de ſphęra, & cyllindro.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3327
"
xml:space
="
preserve
">Sed quia Archimedes eo in loco ſupponit id, quod necipſe, nec alius adhuc inue
<
lb
/>
nit, niſi via naturali, hoc eſt tres partes ęquales ex proportione data effici, non erit in
<
lb
/>
conueniens etiam nobis hac via, circa hoc aliquid dicere.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3328
"
xml:space
="
preserve
">Accipiemus igitur diametrum
<
var
>.c.e.</
var
>
cum addita
<
var
>.e.f.</
var
>
eius ſemidiametro, diuidemus
<
lb
/>
q́ue
<
var
>.f.e.</
var
>
in puncto
<
var
>.h.</
var
>
vt ſupra factum fuit, applicabimus poſtea
<
var
>.c.m.</
var
>
indeterminatam
<
lb
/>
angulariter ad
<
var
>.c.e.</
var
>
à qua
<
var
>.c.m.</
var
>
accipiemus
<
var
>.c.g.</
var
>
æqualem
<
var
>.f.h.</
var
>
quęremus deinde natu-
<
lb
/>
rali via punctum
<
var
>.b.</
var
>
ita ut protrahendo à puncto
<
var
>.e.</
var
>
(altero extremo diametri)
<
var
>e.m.</
var
>
pa
<
lb
/>
rallelam ad
<
var
>.b.g.</
var
>
ductam, erigendo
<
var
>.b.d.</
var
>
perpendicularem ad
<
var
>.c.e.</
var
>
in puncto
<
var
>.b.</
var
>
protra
<
lb
/>
<
reg
norm
="
ctaque
"
type
="
simple
">ctaq́;</
reg
>
<
var
>.d.c.</
var
>
quæ à diametro
<
var
>.e.c.</
var
>
deducta ab
<
var
>.c.</
var
>
incohando vſque ad
<
var
>.x.</
var
>
relinquat nobis
<
var
>.
<
lb
/>
x.f.</
var
>
ęqualem
<
var
>.c.m</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3329
"
xml:space
="
preserve
">Cuius rei ratio eſt, quia quadratum
<
var
>.c.e.</
var
>
ſe habet ad quadratum
<
var
>.c.d.</
var
>
vt
<
var
>.c.e.</
var
>
ad
<
var
>.c.
<
lb
/>
b.</
var
>
ex .4. et .18. ſexti Eucl. </
s
>
<
s
xml:id
="
echoid-s3330
"
xml:space
="
preserve
">ſed ex .4. ita ſe habet
<
var
>.m.c.</
var
>
ad
<
var
>.c.g.</
var
>
vt
<
var
>.e.c.</
var
>
ad
<
var
>.b.c.</
var
>
& cum ſit
<
var
>.c.
<
lb
/>
g.</
var
>
ęq alis
<
var
>.f.h.</
var
>
ſi
<
var
>.c.m.</
var
>
ęqualis fuerit
<
var
>.f.x.</
var
>
habebimus propoſitum. </
s
>
<
s
xml:id
="
echoid-s3331
"
xml:space
="
preserve
">Quod ſi quis per di-
<
lb
/>
ſcretum vel et hoc facere, ita ei agendum erit.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3332
"
xml:space
="
preserve
">Ponamus exempli gratia totum diametrum
<
var
>.c.e.</
var
>
propoſitæ ſphæræ eſſe ut decem,
<
lb
/>
<
reg
norm
="
proportionemque
"
type
="
simple
">proportionemq́;</
reg
>
reſiduę portionis
<
var
>.i.c.t.</
var
>
ad ſecundam
<
var
>.i.e.t.</
var
>
hoc eſt
<
var
>.f.h.</
var
>
ad
<
var
>.h.e.</
var
>
ſeſqui-
<
lb
/>
alteram eſſe, vnde
<
var
>.e.h.</
var
>
bis tertia erit ìpſius
<
var
>.f.h.</
var
>
<
reg
norm
="
totaque
"
type
="
simple
">totaq́;</
reg
>
linea
<
var
>.c.f.</
var
>
erit .15. et
<
var
>.f.h.</
var
>
erit .3.
<
lb
/>
& quadratum lineæ
<
var
>.c.e.</
var
>
erit .100.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3333
"
xml:space
="
preserve
">Quærendo poſtea quadratum lineæ
<
var
>.c.x.</
var
>
cui quadratum
<
var
>.c.e.</
var
>
hoc eſt .100. ita pro-
<
lb
/>
portionatum ſit vt
<
var
>.f.x.</
var
>
ad
<
var
>.f.h.</
var
>
hoc eſt ad .3. ſi autem cogitauerimus
<
var
>.c.x.</
var
>
eſſe nouem
<
lb
/>
partium talium qualium
<
var
>.c.e.</
var
>
eſt decem, eius quadratum erit .81. et
<
var
>.x.f.</
var
>
erit .6. par-
<
lb
/>
tium talium qualium
<
var
>.c.f.</
var
>
eſt .15. dicendo poſtea ſi .100. dat .81. (ex regula de tribus) </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>