Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(275)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div533
"
type
="
section
"
level
="
3
"
n
="
11
">
<
div
xml:id
="
echoid-div538
"
type
="
letter
"
level
="
4
"
n
="
4
">
<
p
>
<
s
xml:id
="
echoid-s3435
"
xml:space
="
preserve
">
<
pb
o
="
275
"
rhead
="
EPISTOL AE.
"
n
="
287
"
file
="
0287
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0287
"/>
ſit quadratum ipſius
<
var
>.D.B</
var
>
. </
s
>
<
s
xml:id
="
echoid-s3436
"
xml:space
="
preserve
">Nunc ſupponendo
<
var
>.A.B.</
var
>
ſimile
<
var
>.a.b.</
var
>
clarum erit ex diffini-
<
lb
/>
tione ſimilium figurarum, quod eadem proportio erit
<
var
>.A.D.</
var
>
ad
<
var
>.D.B.</
var
>
quę
<
var
>.a.d.</
var
>
ad
<
var
>.d.
<
lb
/>
b.</
var
>
hoc eſt
<
var
>.A.D.</
var
>
ad
<
var
>.D.C.</
var
>
vt
<
var
>.a.d.</
var
>
ad
<
var
>.d.c.</
var
>
hoc eſt
<
var
>.A.B.</
var
>
ad
<
var
>.B.c.</
var
>
vt
<
var
>.a.b.</
var
>
ad
<
var
>.b.c.</
var
>
ex prima
<
lb
/>
ſexti, vel .18. ſeu .19. ſeptimi, </
s
>
<
s
xml:id
="
echoid-s3437
"
xml:space
="
preserve
">tunc cum dixerimus ſi
<
var
>.a.b.</
var
>
ita reſpondet ad
<
var
>.b.c.</
var
>
ergo
<
var
>.A.
<
lb
/>
B.</
var
>
correſpondet etiam ita ad
<
var
>.B.C.</
var
>
</
s
>
<
s
xml:id
="
echoid-s3438
"
xml:space
="
preserve
">quare ex regula de tribus rectè fit multiplicando
<
var
>.
<
lb
/>
A.B.</
var
>
per
<
var
>.b.c.</
var
>
productum verò diuidendo per
<
var
>.a.b.</
var
>
ex .15. ſexti vel .20. ſeptimi, cuius
<
lb
/>
prouentus radix quadrata erit quod quærebatur.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3439
"
xml:space
="
preserve
">Sed aliter idem poſſe fieri ſpeculatus ſum, hoc eſt multiplicando numerum .49.
<
lb
/>
ordinis .1000. hominum
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
radice quadrata numeri .3500. propoſiti, productum ve-
<
lb
/>
rò diuidere per radicem quadratam ipſius .1000. vnde prouentus .91. erit numerus
<
lb
/>
vnius ordinis .3500. numeri
<
reg
norm
="
propoſiti
"
type
="
simple
">ꝓpoſiti</
reg
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3440
"
xml:space
="
preserve
">Cuius
<
reg
norm
="
operationis
"
type
="
simple
">oꝑationis</
reg
>
ſpeculatio eſt iſta.
<
lb
/>
<
figure
xlink:label
="
fig-0287-01
"
xlink:href
="
fig-0287-01a
"
number
="
314
">
<
image
file
="
0287-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0287-01
"/>
</
figure
>
</
s
>
<
s
xml:id
="
echoid-s3441
"
xml:space
="
preserve
">Sit
<
var
>.a.b.</
var
>
quadratum .1000. et
<
var
>.a.c.</
var
>
ſua
<
lb
/>
radix et
<
var
>.a.d.</
var
>
rectangulum propoſi-
<
lb
/>
tum ipſius .1000. et
<
var
>.a.e.</
var
>
vnus ordo.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3442
"
xml:space
="
preserve
">Sit etiam
<
var
>.A.B.</
var
>
quadratum .3500. &
<
lb
/>
<
var
>A.C.</
var
>
eius radix et
<
var
>.A.D.</
var
>
<
reg
norm
="
rectangulum
"
type
="
context
">rectangulũ</
reg
>
<
lb
/>
ipſius numeri .3500. propoſiti, ſimile
<
lb
/>
tamen rectangulo
<
var
>.a.d.</
var
>
et
<
var
>.A.E.</
var
>
eius
<
lb
/>
vnus ordo. </
s
>
<
s
xml:id
="
echoid-s3443
"
xml:space
="
preserve
">
<
reg
norm
="
Cum
"
type
="
context
">Cũ</
reg
>
enim
<
var
>.a.b.</
var
>
æquale ſit
<
lb
/>
<
var
>a.d.</
var
>
et
<
var
>.A.B</
var
>
:
<
var
>A.D.</
var
>
<
reg
norm
="
tunc
"
type
="
context
">tũc</
reg
>
<
var
>.a.c.</
var
>
erit media
<
lb
/>
proportionalis inter
<
var
>.a.e.</
var
>
et
<
var
>.e.d.</
var
>
& ſic
<
lb
/>
<
var
>A.C.</
var
>
erit etiam media proportiona
<
lb
/>
lis inter
<
var
>.A.E.</
var
>
et
<
var
>.E.D.</
var
>
per .16. ſexti,
<
lb
/>
ſeu .20. ſeptimi, & quia proporrio. A
<
lb
/>
E. ad
<
var
>.E.D.</
var
>
æqualis eſt proportioni
<
var
>.
<
lb
/>
a.e.</
var
>
ad
<
var
>.e.d.</
var
>
cum
<
var
>.A.D.</
var
>
ſupponatur ſi-
<
lb
/>
mile
<
var
>.a.d.</
var
>
ergo proportio
<
var
>.A.E.</
var
>
ad
<
var
>.A
<
lb
/>
C.</
var
>
ęqualis erit proportioni
<
var
>.a.e.</
var
>
ad
<
var
>.a.
<
lb
/>
c.</
var
>
quę medietates ſunt
<
reg
norm
="
totorum
"
type
="
context
">totorũ</
reg
>
æqua-
<
lb
/>
lium, rectè igitur fiet ſi procedamus
<
lb
/>
ex regula de tribus, dicendo ſi
<
var
>.a.c.</
var
>
<
lb
/>
<
reg
norm
="
correſpondet
"
type
="
context
">correſpõdet</
reg
>
<
var
>.a.e.</
var
>
tùc
<
var
>.A.C.</
var
>
<
reg
norm
="
correſpon
"
type
="
context
">correſpõ</
reg
>
<
lb
/>
det
<
var
>.A.E.</
var
>
ex ſupradictis .15. ſexti. vel
<
lb
/>
20. ſeptimi.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3444
"
xml:space
="
preserve
">Ratio verò quarti quæſiti per ſe
<
lb
/>
patet, quod eſt inuenire
<
reg
norm
="
pauimentum
"
type
="
context
">pauimentũ</
reg
>
<
lb
/>
ſeu aream quadratam, in qua poſſint
<
lb
/>
locari quot homines volueris, ita in
<
lb
/>
ter ſe ſiti, ut vnuſquiſque occupet
<
num
value
="
7
">.
<
lb
/>
7.</
num
>
pedes ipſius areę in longitudinem
<
lb
/>
et .3. per latitudinem à lateribus.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3445
"
xml:space
="
preserve
">Seu ex propoſito hominum nume
<
lb
/>
ro inuenire numerum ipſorum loca-
<
lb
/>
bilem in aliqua area quadrata, ita,
<
lb
/>
vt vnuſquiſque occupet .21. pedes
<
lb
/>
quadratos ipſius areæ.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>