Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(295)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div564
"
type
="
section
"
level
="
3
"
n
="
17
">
<
div
xml:id
="
echoid-div569
"
type
="
letter
"
level
="
4
"
n
="
3
">
<
pb
o
="
295
"
rhead
="
EPISTOL AE.
"
n
="
307
"
file
="
0307
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0307
"/>
<
p
>
<
s
xml:id
="
echoid-s3655
"
xml:space
="
preserve
">
<
reg
norm
="
Propoſitum
"
type
="
context
">Propoſitũ</
reg
>
ſit nobis triangulum
<
var
>.a.b.g.</
var
>
cuius baſis data ſit cum area, ſeu perpendi-
<
lb
/>
culari
<
var
>.a.d.</
var
>
cum angulo etiam
<
var
>.a.</
var
>
ad cognoſcendum autem
<
var
>.a.b.</
var
>
et
<
var
>.b.g.</
var
>
cogitemus circu
<
lb
/>
lum
<
var
>.a.b.q.g.</
var
>
circunſcribere ipſum triangulum cuius diameter
<
var
>.p.q.</
var
>
ad rectos ſe-
<
lb
/>
cet baſim
<
var
>.b.g.</
var
>
in puncto
<
var
>.m.</
var
>
cogitemus etiam
<
var
>.b.p.</
var
>
et
<
var
>.p.g.</
var
>
vnde ex .20. ter-
<
lb
/>
tij Euclid. angulus
<
var
>.b.p.g.</
var
>
æqualis erit
<
lb
/>
<
figure
xlink:label
="
fig-0307-01
"
xlink:href
="
fig-0307-01a
"
number
="
330
">
<
image
file
="
0307-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0307-01
"/>
</
figure
>
angulo
<
var
>.a.</
var
>
& angulus
<
var
>.m.p.b.</
var
>
erit eius di
<
lb
/>
midium, quod ex te ipſo cognoſces, &
<
lb
/>
<
reg
norm
="
angulus
"
type
="
simple
">angulꝰ</
reg
>
<
var
>.p.b.m.</
var
>
ſimiliter cognoſcetur,
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3656
"
xml:space
="
preserve
">quare ex .29. primi eiuſdem Montere
<
lb
/>
gij cognoſcemus
<
var
>.p.m.</
var
>
et
<
var
>.p.b.</
var
>
(nam
<
var
>.b.
<
lb
/>
m.</
var
>
datum fuit, vt dimidium totius ba-
<
lb
/>
ſis
<
var
>.b.g.</
var
>
) ducta poſtea
<
var
>.b.q.</
var
>
ex
<
reg
norm
="
eadem
"
type
="
context
">eadẽ</
reg
>
.29.
<
lb
/>
cognoſcemus
<
var
>.p.q.</
var
>
cum
<
var
>.p.b.</
var
>
iam cogni
<
lb
/>
ta fuerit, à qua
<
var
>.p.q.</
var
>
(diametro)
<
reg
norm
="
dempta
"
type
="
context
">dẽpta</
reg
>
<
lb
/>
<
var
>p.m.</
var
>
remanebit
<
var
>.q.m.</
var
>
cognita,
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
qua
<
lb
/>
iuncta cum fuerit
<
var
>.m.t.</
var
>
æquali
<
var
>.a.d.</
var
>
per
<
lb
/>
pendiculari, dabitur
<
var
>.q.t.</
var
>
et
<
var
>.t.p.</
var
>
inter
<
lb
/>
quas
<
var
>.a.t.</
var
>
media proportionalis loca-
<
lb
/>
tur, </
s
>
<
s
xml:id
="
echoid-s3657
"
xml:space
="
preserve
">quare cognoſcemus
<
var
>.a.t.</
var
>
quæ ſinus
<
lb
/>
eſt arcus
<
var
>.a.p.</
var
>
vnde cognitus erit arcus
<
lb
/>
<
var
>a.p.</
var
>
ſed arcus
<
var
>.p.g.</
var
>
cognitus eſt median
<
lb
/>
te angulo
<
var
>.p.b.g.</
var
>
cognito, qui quidem
<
lb
/>
arcus
<
var
>.p.g.</
var
>
ſi coniunctus fuerit cum arcu
<
var
>.p.a.</
var
>
cognoſcemus compoſitum
<
var
>.a.g.</
var
>
& eius
<
lb
/>
chorda ſimiliter (hoc eſt
<
reg
norm
="
ſecundum
"
type
="
context
">ſecundũ</
reg
>
latus) qua cognita, illico cognoſcemus chordam
<
lb
/>
<
var
>a.b.</
var
>
hoc eſt tertium latus trianguli propoſiti.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div571
"
type
="
letter
"
level
="
4
"
n
="
4
">
<
head
xml:id
="
echoid-head436
"
style
="
it
"
xml:space
="
preserve
">Quæ
<
unsure
/>
dam not and a in Federicum Comandinum.</
head
>
<
head
xml:id
="
echoid-head437
"
xml:space
="
preserve
">AD EVNDEM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3658
"
xml:space
="
preserve
">PVtabas enim me ioco dixiſſe Federicum Comandinum non omnino irrepræ-
<
lb
/>
henſibilem eſſe, vide igitur, quod ſcribit in quinto lemmate in decimam
<
lb
/>
propoſitionem libr .2. de inſidentibus aquæ Archimedis, volens demonſtra-
<
lb
/>
re eandem eſſe proportionem
<
var
>.l.b.</
var
>
ad
<
var
>.b.m.</
var
>
quæ
<
var
>.c.e.</
var
>
ad
<
var
>.e.a.</
var
>
vbi eſt aliquo modo pro-
<
lb
/>
lixum, mediante linea
<
var
>.c.p.</
var
>
cum ſuis partibus, citans etiam antecedens lemma extra
<
lb
/>
propoſitum, eo quod nec in antecedente lemmate, nec in alio, ipſe vnquam proba
<
lb
/>
uerit proportionem
<
var
>.c.d.</
var
>
ad
<
var
>.d.q.</
var
>
eſſe, vt
<
var
>.l.b.</
var
>
@d.b.m. ſed ne putes me falli, tibi demon
<
lb
/>
ſtrabo non eſſe neceſſarium ducere lineam
<
var
>.c.m.p.</
var
>
vel
<
var
>.q.p.</
var
>
eo quod
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
per quintam
<
lb
/>
lib. de quadratura parabolę Archimedis, ita ſit
<
var
>.c.d.</
var
>
ad
<
var
>.d.e.</
var
>
vt
<
var
>.l.b.</
var
>
ad
<
var
>.b.m.</
var
>
exiſtente
<
lb
/>
<
var
>a.c.</
var
>
dupla ipſi
<
var
>.d.c.</
var
>
et
<
var
>.e.c.</
var
>
dupla ipſi
<
var
>.g.c.</
var
>
et
<
var
>.l.d.</
var
>
dupla ipſi
<
var
>.l.b</
var
>
: erit, primo componen-
<
lb
/>
do
<
var
>.c.e.</
var
>
ad
<
var
>.e.d.</
var
>
vt
<
var
>.l.d.</
var
>
ad
<
var
>.d.m.</
var
>
& per æqualitatem proportionum, ita erit
<
var
>.e.g.</
var
>
ad
<
var
>.e.d.</
var
>
<
lb
/>
vt
<
var
>.b.d.</
var
>
2d.d.m. & per .19. quinti Eucli. ita erit
<
var
>.e.g.</
var
>
ideſt
<
var
>.g.c.</
var
>
ad
<
var
>.g.d.</
var
>
vt
<
var
>.b.d.</
var
>
ideſt
<
var
>.l.b.</
var
>
<
lb
/>
ad
<
var
>.b.m.</
var
>
ſed
<
var
>.c.g.</
var
>
ad
<
var
>.g.d.</
var
>
eft vt
<
var
>.c.e.</
var
>
ad
<
var
>.e.a.</
var
>
ratio eſt, quia componendo ita eſt
<
var
>.c.d.</
var
>
ad
<
var
>.d.
<
lb
/>
g.</
var
>
vt
<
var
>.c.a.</
var
>
ad
<
var
>.a.e.</
var
>
& hoc eſt, quia permutando, ita eſt
<
var
>.a.c.</
var
>
ad
<
var
>.d.c.</
var
>
vt
<
var
>.a.e.</
var
>
ad
<
var
>.d.g.</
var
>
& hoc
<
lb
/>
verum eſt ex .19. quinti eo quod totius
<
var
>.a.c.</
var
>
ad totum
<
var
>.d.c.</
var
>
eft vt abſciſſi
<
var
>.e.c.</
var
>
ad abſciſ
<
lb
/>
ſum
<
var
>.g.c.</
var
>
vt ſupradixi.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>