Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(353)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div676
"
type
="
section
"
level
="
3
"
n
="
30
">
<
div
xml:id
="
echoid-div676
"
type
="
letter
"
level
="
4
"
n
="
1
">
<
pb
o
="
353
"
rhead
="
EPISTOL AE.
"
n
="
365
"
file
="
0365
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0365
"/>
</
div
>
</
div
>
<
div
xml:id
="
echoid-div680
"
type
="
section
"
level
="
3
"
n
="
31
">
<
div
xml:id
="
echoid-div680
"
type
="
letter
"
level
="
4
"
n
="
1
">
<
head
xml:id
="
echoid-head517
"
xml:space
="
preserve
">DE MODO DIVIDENDI PARABOLAM
<
lb
/>
propoſitam ſecundum datam proportionem.</
head
>
<
head
xml:id
="
echoid-head518
"
style
="
it
"
xml:space
="
preserve
">Pamphilo Gothfrid.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4244
"
xml:space
="
preserve
">
<
emph
style
="
sc
">QVod</
emph
>
à me quæris, eſt quidem poſſibile, non tamen adhuc inuentum, quo
<
lb
/>
niam nemo ad
<
reg
norm
="
hunc
"
type
="
context
">hũc</
reg
>
vſque diem diuiſit vnam datam proportionem in tres
<
lb
/>
æquales partes, ſed ſi hoc pro facto conceſſeris, nunc tibi morem geram.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4245
"
xml:space
="
preserve
">Nam proponis n. ihi parabolem
<
var
>.x.b.e.</
var
>
cum proportione
<
var
>.p.</
var
>
ad
<
var
>.q.</
var
>
<
reg
norm
="
cupiſque
"
type
="
simple
">cupiſq́;</
reg
>
<
lb
/>
ſcire modum diuidendi ipſam parabolem vna mediante linea parallela ipſi baſi, ita
<
lb
/>
vt eandem habeat proportionem tota parabola ad partem abſciſſam, quæ eſt inter
<
var
>.
<
lb
/>
p.</
var
>
et
<
var
>.q</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4246
"
xml:space
="
preserve
">Ad quod faciendum, ſupponendum primò datam proportionem inter
<
var
>.
<
lb
/>
p.</
var
>
et
<
var
>.q.</
var
>
diuiſam eſſe in tres partes æquales, duabus lineis mediantibus
<
var
>.n.</
var
>
et
<
var
>.u.</
var
>
quæ me
<
lb
/>
diæ proportionales vocabuntur inter
<
var
>.p.</
var
>
et
<
var
>.q</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4247
"
xml:space
="
preserve
">deinde à quouis puncto circunferentię
<
lb
/>
ipſius figuræ ducatur parallela baſi
<
var
>.x.e.</
var
>
poſtea verò per puncta media harum dua-
<
lb
/>
rum
<
reg
norm
="
æquidiſtantium
"
type
="
context
">æquidiſtantiũ</
reg
>
protrahatur
<
var
>.g.b.</
var
>
quæ diameter erit ſectionis, ex 28. ſecundi Per-
<
lb
/>
gei, </
s
>
<
s
xml:id
="
echoid-s4248
"
xml:space
="
preserve
">diuidatur deinde hæc diameter in puncto
<
var
>.a.</
var
>
ita quod eadem proportio ſit ipſius
<
lb
/>
<
var
>b.g.</
var
>
ad
<
var
>.b.a.</
var
>
quæ ipſius
<
var
>.p.</
var
>
ad
<
var
>.u.</
var
>
quod tibi facile erit, ſecando à linea
<
var
>.p.</
var
>
partem
<
var
>.i.</
var
>
æqua
<
lb
/>
lem ipſi
<
var
>.u.</
var
>
tali modo poſtea diuidendo
<
var
>.b.g.</
var
>
ex .12. ſexti, ducatur a puncto
<
var
>.a.</
var
>
ipſa
<
var
>.d.
<
lb
/>
h.</
var
>
parallclam ipſi
<
var
>.x.e.</
var
>
& habebitur propoſitum.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4249
"
xml:space
="
preserve
">Pro cuius reiratione, ſcies primum quod
<
var
>.h.d.</
var
>
diuiſa erit à diametro
<
var
>.b.g.</
var
>
per æqua
<
lb
/>
lia ex .7. primi Pergei, vel ſi cogitabimus aliquam lineam tangentem ipſam parabo
<
lb
/>
lam in puncto
<
var
>.b</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4250
"
xml:space
="
preserve
">tunc ex quinta ſecundi ipſius Pergei habebimus ipſam eſſe paralle-
<
lb
/>
lam
<
var
>.e.x.</
var
>
& ex .30. primi Eucli. erit ſimiliter æquidiſtans
<
var
>.d.h.</
var
>
vnde ex .46. primi eiuſ-
<
lb
/>
dem Pergei
<
var
>.h.a.</
var
>
æqualis erit
<
var
>.d.a</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4251
"
xml:space
="
preserve
">Protrahatur deinde
<
var
>.e.b</
var
>
: d b:
<
var
>x.b.</
var
>
et
<
var
>.h.b.</
var
>
vnde ex .17
<
lb
/>
lib. de quadratura parabolæ Archimedis, habebimus eandem proportionem ſuper
<
lb
/>
ficiei totalis parabolæ
<
var
>.x.b.e.</
var
>
ad trigonum
<
var
>.x.b.e.</
var
>
quæ portionis
<
var
>.h.b.d.</
var
>
ad ſuum
<
reg
norm
="
tri- gonum
"
type
="
context
">tri-
<
lb
/>
gonũ</
reg
>
, eo quod
<
reg
norm
="
tam
"
type
="
context
">tã</
reg
>
vna quàm alia erit ſeſquitertia,
<
reg
norm
="
eius
"
type
="
simple
">eiꝰ</
reg
>
<
reg
norm
="
etiam
"
type
="
context
">etiã</
reg
>
medietates ſic ſe
<
reg
norm
="
habebunt
"
type
="
context
">habebũt</
reg
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4252
"
xml:space
="
preserve
">Vnde permutando, proportio medietatis totalis parabolę ad medietatem partia
<
lb
/>
lem ipſius, æqualis erit proportioni trianguli
<
lb
/>
<
var
>g.b.e.</
var
>
ad triangulum
<
var
>.a.b.d.</
var
>
ſed ex .20. primi
<
lb
/>
Pergei, eadem eſt proportio quadrati ipſius
<
var
>.
<
lb
/>
<
figure
xlink:label
="
fig-0365-01
"
xlink:href
="
fig-0365-01a
"
number
="
402
">
<
image
file
="
0365-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0365-01
"/>
</
figure
>
g.e.</
var
>
ad quadratum ipſius
<
var
>.a.d.</
var
>
quæ
<
var
>.b.g.</
var
>
ad
<
var
>.b.a.</
var
>
<
lb
/>
hoc eſt, vt
<
var
>.g.e.</
var
>
ad
<
var
>.a.o.</
var
>
ex ſimilitudine triangu-
<
lb
/>
lorum, & quia
<
var
>.b.g.</
var
>
ad
<
var
>.b.a.</
var
>
eſt ſicut
<
var
>.p.</
var
>
ad
<
var
>.u.</
var
>
ita
<
lb
/>
igitur erit quadrati ipſius
<
var
>.g.e.</
var
>
ad quadratum
<
lb
/>
ipſeus
<
var
>.a.d.</
var
>
</
s
>
<
s
xml:id
="
echoid-s4253
"
xml:space
="
preserve
">quare
<
var
>.g.e.</
var
>
ad
<
var
>.a.d.</
var
>
erit ut p. ad
<
var
>.n.</
var
>
<
lb
/>
ex .18. ſexti Euclid. </
s
>
<
s
xml:id
="
echoid-s4254
"
xml:space
="
preserve
">ſed cum ex .24. eiuſdem
<
lb
/>
proportio trianguli
<
var
>.b.g.e.</
var
>
ad triangulum
<
var
>.b.
<
lb
/>
a.d.</
var
>
compoſita ſit ex proportione
<
var
>.g.e.</
var
>
ad
<
var
>.a.
<
lb
/>
d.</
var
>
er. ex
<
var
>.g.b.</
var
>
ad
<
var
>.b.a.</
var
>
hoc eſt
<
var
>.g.e.</
var
>
ad
<
var
>.a.o.</
var
>
&
<
lb
/>
quia
<
reg
norm
="
proportio
"
type
="
simple
">ꝓportio</
reg
>
<
var
>.g.e.</
var
>
ad
<
var
>.a.o.</
var
>
æqualis eſt ei quæ
<
var
>.p.</
var
>
<
lb
/>
ad. u ex .11. quinti Euclid. </
s
>
<
s
xml:id
="
echoid-s4255
"
xml:space
="
preserve
">& proportio
<
var
>.g.e.</
var
>
<
lb
/>
ad
<
var
>.a.d.</
var
>
æqualis eſt ei quæ
<
var
>.p.</
var
>
ad
<
var
>.n.</
var
>
hoc eſt vt
<
var
>.u.</
var
>
<
lb
/>
ad
<
var
>.q.</
var
>
ergo proportio trianguli
<
var
>.b.g.e.</
var
>
ad trian-
<
lb
/>
gulum
<
var
>.b.a.d.</
var
>
compoſita erit ex ca quę
<
var
>.p.</
var
>
ad
<
var
>.u.</
var
>
<
lb
/>
& ex ea quæ
<
var
>.u.</
var
>
ad
<
var
>.q.</
var
>
æqualis ergo erit ei, quæ
<
lb
/>
p. ad
<
var
>.q.</
var
>
& ita medietates parabolarum, & eorum dupla.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>