Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(379)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div730
"
type
="
section
"
level
="
3
"
n
="
41
">
<
div
xml:id
="
echoid-div733
"
type
="
letter
"
level
="
4
"
n
="
3
">
<
p
>
<
s
xml:id
="
echoid-s4480
"
xml:space
="
preserve
">
<
pb
o
="
379
"
rhead
="
EPISTOLAE.
"
n
="
391
"
file
="
0391
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0391
"/>
et
<
var
>.b.u.g.</
var
>
) ſint inuicem æquales ex .4. eiuſdem.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4481
"
xml:space
="
preserve
">Accipiatur deinde vel intelligatur
<
var
>.g.p.</
var
>
æqualis duabus te
<
unsure
/>
rtijs ipſius
<
var
>.a.g.</
var
>
ducatur
<
lb
/>
q́ue
<
var
>.b.p.</
var
>
quam probabo maiorem eſſe duplo ipſius
<
var
>.a.p.</
var
>
vnde maior erit latere ipſius
<
lb
/>
trigoni æquilateris, cuius dimidium eſt
<
var
>.a.p.</
var
>
ſcimus enim ipſum latus ſe habere ad
<
var
>.m.
<
lb
/>
g.</
var
>
vt quinque ad .3. ita etiam
<
var
>.a.p.</
var
>
ad
<
var
>.a.g.</
var
>
vt diximus.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4482
"
xml:space
="
preserve
">Cum
<
reg
norm
="
autem
"
type
="
context
">autẽ</
reg
>
angulus
<
var
>.a.b.g.</
var
>
ſit quarta pars anguli
<
var
>.b.g.a.</
var
>
ex .10. quarti & quinta pars
<
lb
/>
vnius recti ex .32. primi, dictus angulus erit graduum .18. et
<
var
>.a.g.</
var
>
erit partium .30902.
<
lb
/>
et
<
var
>.a.b.</
var
>
partium .95015 et
<
var
>.a.p.</
var
>
51503. vnde ex penultima primi latus
<
var
>.b.p.</
var
>
erit par-
<
lb
/>
tium .108075. duplum vero ipſius
<
var
>.a.p.</
var
>
erit .103006. latus igitur dicti trigoni, quod
<
lb
/>
ab
<
var
>.p.</
var
>
erigitur, ſecabit perpendicularem
<
var
>.a.b.</
var
>
ſub
<
var
>.b.</
var
>
hoc eſt inter
<
var
>.b.</
var
>
et
<
var
>.a.</
var
>
ex penultima
<
lb
/>
primi. </
s
>
<
s
xml:id
="
echoid-s4483
"
xml:space
="
preserve
">Finiatur enim triangulus æquicrurus
<
var
>.b.q.p.</
var
>
quem probaui maiorem eſſe æ-
<
lb
/>
quilatero iſoperimetro pentagono propoſito,
<
reg
norm
="
ducaturque
"
type
="
simple
">ducaturq́;</
reg
>
<
var
>.u.p.</
var
>
ducatur etiam
<
var
>.u.n.</
var
>
pa-
<
lb
/>
rallela ipſi
<
var
>.b.g.</
var
>
quæ concludet triangulum
<
var
>.g.u.n.</
var
>
ſimilem triangulo
<
var
>.m.b.g.</
var
>
eo quod
<
lb
/>
cum angulus
<
var
>.m.b.g.</
var
>
æqualis ſit angulo
<
var
>.b.g.u.</
var
>
ex .16. tertij, per .27. primi
<
var
>.m.b.</
var
>
et
<
var
>.g.u.</
var
>
<
lb
/>
erunt inuicem
<
reg
norm
="
æquidiſtantes
"
type
="
context
">æquidiſtãtes</
reg
>
, vnde angulus
<
var
>.b.m.g.</
var
>
æqualis erit angulo
<
var
>.u.g.n.</
var
>
et. ex .29.
<
lb
/>
angulus
<
var
>.g.u.n.</
var
>
æqualis erit angulo
<
var
>.u.g.b</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4484
"
xml:space
="
preserve
">quare etiam angulo
<
var
>.g.b.m.</
var
>
& angulus
<
var
>.u.n.
<
lb
/>
g.</
var
>
angulo
<
var
>.b.g.m.</
var
>
ex .32. eiuſdem, </
s
>
<
s
xml:id
="
echoid-s4485
"
xml:space
="
preserve
">vnde ex .4. ſexti proportio
<
var
>.g.n.</
var
>
ad
<
var
>.g.m.</
var
>
erit .vt
<
var
>.g.u.</
var
>
<
lb
/>
ad
<
var
>.m.b.</
var
>
ſed cum
<
var
>.g.u.</
var
>
maior ſit dimidio ipſius
<
var
>.b.g.</
var
>
ex .20. primi, hoc eſt maior dimi-
<
lb
/>
dio ipſius
<
var
>.b.m.</
var
>
ergo
<
var
>.g.n.</
var
>
etiam maior erit ipſa
<
var
>.g.a.</
var
>
quapropter maior erit ipſa
<
var
>.g.p.</
var
>
<
lb
/>
cum
<
var
>.g.p.</
var
>
minor ſit ipſa
<
var
>.g.a.</
var
>
ex hypotheſi, ducta deinde cum fuerit
<
var
>.b.n.</
var
>
habebimus
<
lb
/>
triangulum
<
var
>.b.n.g.</
var
>
<
reg
norm
="
æqualem
"
type
="
context
">æqualẽ</
reg
>
triangulo
<
var
>.b.u.g.</
var
>
&
<
reg
norm
="
maiorem
"
type
="
context
">maiorẽ</
reg
>
<
reg
norm
="
triangulo
"
type
="
context
">triãgulo</
reg
>
<
var
>.b.p.g.</
var
>
ex prima ſexti
<
lb
/>
vel quia totum maius eſt ſua parte. </
s
>
<
s
xml:id
="
echoid-s4486
"
xml:space
="
preserve
">Triangulus igitur
<
var
>.b.u.g.</
var
>
maior eſt triangu-
<
lb
/>
lo
<
var
>.b.p.g</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4487
"
xml:space
="
preserve
">quare triangulus
<
var
>.b.u.o.</
var
>
maior erit triangulo
<
var
>.g.o.p.</
var
>
ex communi conceptu,
<
lb
/>
idem infero ab alia parte dictarum figurarum. </
s
>
<
s
xml:id
="
echoid-s4488
"
xml:space
="
preserve
">Quare pentagonus
<
var
>.b.d.m.g.u.</
var
>
maior
<
lb
/>
erit triangulo
<
var
>.b.q.p.</
var
>
quem probauimus maiorem eſſe triangulo æquilatero ſibi iſo-
<
lb
/>
perimetro.</
s
>
</
p
>
<
figure
position
="
here
"
number
="
432
">
<
image
file
="
0391-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0391-01
"/>
</
figure
>
</
div
>
<
div
xml:id
="
echoid-div734
"
type
="
letter
"
level
="
4
"
n
="
4
">
<
head
xml:id
="
echoid-head560
"
style
="
it
"
xml:space
="
preserve
">Comparatio periferiarum quadrati & trianguli aquilateri circunſcriptorum ab eodem circulo.</
head
>
<
head
xml:id
="
echoid-head561
"
xml:space
="
preserve
">AD EVNDEM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4489
"
xml:space
="
preserve
">QVod autem periferia quadrati in eodem circulo inſcripti, in quo ſit triangu-
<
lb
/>
lus æquilaterus, longior ſit periferia ipſius trianguli æquilateri, abſque vllo </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>